摘要 | 第1-6页 |
Abstract | 第6-10页 |
第一章 绪论 | 第10-18页 |
·生物数学的简述及研究现状 | 第10-13页 |
·脉冲微分系统在生物数学中的发展 | 第13-15页 |
·问题的提出及研究意义 | 第15-16页 |
·本文的主要工作 | 第16-18页 |
第二章 预备知识 | 第18-40页 |
·平衡态和相平面 | 第18-21页 |
·几种常见的平衡态 | 第21-25页 |
·实分岔点和极限点 | 第25-29页 |
·分岔的基本概念及其三种基本原型 | 第29-37页 |
·状态脉冲微分方程 | 第37-40页 |
第三章 具有脉冲反馈控制和B-D功能反应的捕食系统 | 第40-58页 |
·引言 | 第40-41页 |
·模型建立 | 第41-42页 |
·不带脉冲的捕食系统分析 | 第42-44页 |
·两类Poincare映射 | 第44-48页 |
·第一类Poincare映射 | 第45-46页 |
·第二类Poincare映射 | 第46-48页 |
·半周期解的存在性和稳定性 | 第48-53页 |
·非平凡周期解的存在性和稳定性 | 第53-58页 |
第四章 数值模拟 | 第58-64页 |
·数值模拟 | 第58-62页 |
·方法对比 | 第62-64页 |
第五章 结论和展望 | 第64-66页 |
·论文总结 | 第64页 |
·问题与展望 | 第64-66页 |
参考文献 | 第66-74页 |
致谢 | 第74页 |