首页--工业技术论文--自动化技术、计算机技术论文--遥感技术论文--遥感图像的解译、识别与处理论文--图像处理方法论文

面向高分辨率图像场景分类的特征提取与选择研究

摘要第4-6页
Abstract第6-8页
Abbreviations第19-20页
Chapter 1 Introduction第20-49页
    1.1 Overview on Remote Sensing第20-22页
    1.2 Remote Sensing Imaging System第22-25页
        1.2.1 Fundamental Concepts第22-23页
        1.2.2 Hyper-spectral images第23-24页
        1.2.3 VHR remote sensing images第24-25页
    1.3 Overview on Remote Sensing Images Representation第25-41页
        1.3.1 Low Level Features for VHR Images Representation第26-28页
        1.3.2 Midlevel Features for VHR Images Representation第28-33页
        1.3.3 High Level Features for VHR Images Representation第33-41页
    1.4 Support Vector Machine for Remote Sensing Images Classification第41-44页
        1.4.1 Fundamental Concept of SVM第42-43页
        1.4.2 Multiclass classification based on SVM第43-44页
    1.5 The Problems第44-45页
    1.6 Thesis Contributions第45-47页
    1.7 Structure of the Thesis第47-49页
Chapter 2 A Sparse PCA-Based Features Selection Method for VHR Scene Classification第49-70页
    2.1 Introduction第49-60页
        2.1.1 s PCA Technique for Features Selection第51-54页
        2.1.2 Experimental Results and Analysis第54-60页
    2.2 Classification of VHR satellite imagery based on saliency computing and sparse PCA第60-69页
        2.2.1 Saliency Detection for Patches Sampling第61-62页
        2.2.2 Experimental Results第62-69页
    2.3 Summary第69-70页
Chapter 3 A Deep Feature Fusion Method for VHR Remote Sensing Scene Classification第70-92页
    3.1 Introduction第70-72页
    3.2 Deep Features Fusion Based On Discriminant Correlation Analysis Description第72-88页
        3.2.1 Deep VGG-Net for Feature Extraction第73-74页
        3.2.2 Features Fusion Based On Discriminant Correlation Analysis第74-78页
        3.2.3 Experimental Results and Setup第78-88页
    3.3 Experiment Result Deep Feature Extraction and Combination Based on pre-trained CNN Models第88-91页
    3.4 Summary第91-92页
Chapter 4 Discriminative DCNN Features Extraction for VHR Image Scene Classification第92-105页
    4.1 Introduction第92-93页
    4.2 Bag of Deep Features第93-104页
        4.2.1 Bag of convolutional features Extraction第95页
        4.2.2 Experimental Results of Bag of Deep Features第95-104页
    4.3 Summary第104-105页
Conclusions第105-107页
References第107-120页
List of Publications第120-123页
Acknowledgements第123页

论文共123页,点击 下载论文
上一篇:高分辨率遥感图像多时相对齐与分类技术研究
下一篇:光学遥感图像有效区域在轨实时检测与压缩技术研究