首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--组合数学(组合学)论文--图论论文

复杂动态网络的链接预测

摘要第4-6页
Abstract第6-7页
Chapter 1 Introduction第18-36页
    1.1 Link Prediction in Complex networks第18-20页
    1.2 Overview of related works第20-24页
    1.3 Similarity-Based Algorithms第24-29页
        1.3.1 Local Similarity Indices第24-26页
        1.3.2 Global Similarity Indices第26-28页
        1.3.3 Quasi-Local Indices第28-29页
    1.4 Evaluation Matrix第29-31页
    1.5 Motivations and Contributions第31-34页
    1.6 Summary第34-36页
Chapter 2 Link Prediction in dynamic networks by Information Integration第36-57页
    2.1 Introduction第36-37页
    2.2 Reduced static graph approaches第37-39页
        2.2.1 Traditional reduced static graph method第37-38页
        2.2.2 Improved reduced static graph approach第38-39页
    2.3 Exploiting community structure for link prediction第39-42页
        2.3.1 Method for detecting communities第40-41页
        2.3.2 Algorithm for generating community matrix第41-42页
    2.4 Exploiting node centrality for link prediction第42-44页
        2.4.1 Eigenvector centrality第42-43页
        2.4.2 Centrality matrix derivation第43页
        2.4.3 Algorithm for generating centrality matrix第43-44页
    2.5 Integrated time series model for temporal link prediction第44-47页
        2.5.1 Overview of the algorithm第44-46页
        2.5.2 Algorithm for integrated time series information第46-47页
        2.5.3 Computational complexity analysis第47页
    2.6 Experimental results第47-55页
        2.6.1 Testdatasets第47-48页
        2.6.2 Experiment setup第48-50页
        2.6.3 Experimental results and analysis第50-55页
    2.7 Summary第55-57页
Chapter 3 Link Prediction in Dynamic Uncertain Networks第57-80页
    3.1 Introduction第57-58页
    3.2 Concepts and Definitions第58-59页
    3.3 Random walk in static uncertain networks model第59-61页
    3.4 Computing the transformation matrix (?)第61-63页
    3.5 Calculate (?)_u(u,v) in sub-graph G(u)第63-67页
    3.6 Time series-random walk method第67-69页
    3.7 Experimental results第69-78页
        3.7.1 Datasets tested第69-71页
        3.7.2 Experiment setup第71-72页
        3.7.3 Experimental results and analysis第72-78页
    3.8 Summary第78-80页
Chapter 4 Link Prediction in Dynamic Networks Based on Nonnegative Matrix Factorization第80-100页
    4.1 Introduction第80-82页
    4.2 Similarity Matrix and Its Nonnegative Matrix Factorization第82-83页
    4.3 Iterative method for NMF第83-87页
        4.3.1 Updating U~((t))第84页
        4.3.2 Updating V~((l))第84页
        4.3.3 Updating U~*第84-85页
        4.3.4 Updating V~*第85页
        4.3.5 The algorithm第85-87页
    4.4 Time complexity analysis第87页
    4.5 Convergence and correctness analysis第87-90页
    4.6 Experimental results第90-97页
        4.6.1 Datasets tested第90-91页
        4.6.2 Experiment setup第91-92页
        4.6.3 Experimental results and analysis第92-97页
    4.7 Summary第97-100页
Chapter 5 Fast Algorithm for Vertex Link Predicting in Dynamic Networks第100-122页
    5.1 Introduction第100-101页
    5.2 Transformation Matrix for Dynamic Network第101-103页
    5.3 Local Random Walk第103-104页
        5.3.1 Local random walk第103-104页
        5.3.2 Superposed random walk第104页
    5.4 Sampling Based Similarity Computation第104-112页
        5.4.1 Approximation of SRW by path sampling第104-106页
        5.4.2 Path selection by random walk第106-107页
        5.4.3 The size of sampling path set第107-110页
        5.4.4 Algorithm for similarity estimation involving a given node第110-112页
    5.5 Time complexity analysis第112-113页
    5.6 Experimental results第113-119页
        5.6.1 Datasets tested第113-114页
        5.6.2 Experiment setup第114-115页
        5.6.3 Experimental results and analysis第115-119页
    5.7 Summary第119-122页
Chapter 6 Conclusions and Future Works第122-125页
References第125-132页
Acknowledgements第132-134页
List of Publications第134页
Research Projects Participated During the Doctoral Study第134-137页
About the Author第137页

论文共137页,点击 下载论文
上一篇:产业人才供给与行业大学发展改革研究
下一篇:政府体育支出对非政府体育支出的引导效应