首页--交通运输论文--公路运输论文--汽车工程论文--汽车结构部件论文--电气设备及附件论文

采用ELM的基于眼部状态的驾驶员疲劳检测方法的研究

Abstract第4页
摘要第5-11页
CHAPTER 1 Introduction第11-21页
    1.1 Problem statement and background第11-12页
    1.2 Thesis objectives第12-13页
    1.3 China and Abroad researches status第13-14页
        1.3.1 China researches status第13-14页
        1.3.2 Abroad researches status第14页
    1.4 Fatigue detection technologies classification第14-18页
        1.4.1 Detection based on physical characteristic第15页
        1.4.2 Detection based on vehicle characteristics第15-17页
        1.4.3 Detection based on the drier behavior characteristics第17-18页
    1.5 Thesis outlines第18-19页
    1.6 chapter summary第19-21页
CHAPTER 2 Related image processing tools第21-35页
    2.1 Image representation第21-22页
    2.2 Gray scale transform第22-24页
    2.3 Histogram and histogram equalization第24-28页
        2.3.1 Histogram第24-25页
        2.3.2 Histogram equalization第25-28页
    2.4 Image binarization第28-29页
    2.5 Image filtering第29-31页
        2.5.1 Gaussian kernel filter第29-30页
        2.5.2 Median filter第30-31页
    2.6 Morphological image processing第31-34页
        2.6.1 Erosion and Dilation第32-33页
            2.6.1.1 Erosion第32-33页
            2.6.1.2 Dilation第33页
        2.6.2 Opening and closing第33-34页
    2.7 chapter summary第34-35页
CHAPTER 3 Image acquisition and face detection techniques第35-53页
    3.1 Image acquisition第35页
    3.2 Face detection techniques第35-42页
        3.2.1 Template matching method第36页
        3.2.2 Features invariant methods第36-37页
        3.2.3 Appearance based method第37-38页
        3.2.4 Knowledge based method第38-39页
        3.2.5 Skin color based segmentation第39-42页
            3.2.5.1 Color spaces第39-42页
                3.2.5.1.1 RGB color space第39-40页
                3.2.5.1.2 CMY and CMYK color models第40页
                3.2.5.1.3 HIS color space第40-41页
                3.2.5.1.4 The YCbCr color space第41-42页
    3.3 Proposed face detection and tracking method第42-52页
        3.3.1 Our skin color based segmentation for face detection第42-44页
        3.3.2 Kanade-Lucas-Tomasi(KLT)algorithm for face tracking第44-50页
        3.3.3 Results of the proposed method第50-52页
    3.4 chapter summary第52-53页
CHAPTER 4 Eye localization and detection第53-63页
    4.1 eye detection techniques第53-54页
    4.2 Edge detection第54-58页
        4.2.1 Sobel edge detection第55页
        4.2.2 Robert edge detection第55-56页
        4.2.3 Prewitt edge detection第56页
        4.2.4 Laplacian edge detection第56-57页
        4.2.5 Canny edge detection第57-58页
    4.3 Eye detection第58-62页
        4.3.1 Eye localization第58-59页
            4.3.1.1 Results of eye area localization第59页
        4.3.2 Eye detection by integral projection第59-62页
            4.3.2.1 Results of the eye detection第62页
    4.4 chapter summary第62-63页
CHAPTER 5 Fatigue detection and ELM第63-79页
    5.1 Features extraction第63-66页
    5.2 Extreme learning machine ELM第66-71页
    5.3 experimental analyses第71-76页
    5.4 Hardware and software environment第76-79页
        5.4.1 MATLAB software第76-78页
            5.4.1.1 Main parts of the MATLAB software第77-78页
        5.4.2 Hardware第78-79页
CHAPTER 6 Conclusion and future work第79-81页
    6.1 Conclusion第79-80页
    6.2 Future work第80-81页
REFERENCES第81-85页
ACKNOWLEDGEMENT第85-86页

论文共86页,点击 下载论文
上一篇:生物质气化事故机理及安全对策
下一篇:通用关系数据库脚本语言的设计与实现