中文摘要 | 第7-19页 |
英文摘要 | 第19-33页 |
符号说明 | 第34-35页 |
第一章 带马尔科夫链模型下的最优转换问题及其在股票交易问题中的应用 | 第35-65页 |
1.1 引言 | 第35-37页 |
1.2 问题描述和预备结果 | 第37-40页 |
1.3 动态规划原理和变分不等式 | 第40-52页 |
1.4 双时间尺度情形 | 第52-55页 |
1.5 在股票交易问题中的应用 | 第55-65页 |
1.5.1 两个状态的情形 | 第57-58页 |
1.5.2 四个状态的情形 | 第58-65页 |
第二章 随机离开时间和不完备市场下的均值-方差证券投资组合问题 | 第65-87页 |
2.1 引言 | 第65-67页 |
2.2 问题描述 | 第67-70页 |
2.3 可行性 | 第70-73页 |
2.4 SRE和辅助BSDE的可解性 | 第73-79页 |
2.5 不受限问题的解 | 第79-82页 |
2.6 有效投资组合与有效前沿 | 第82-87页 |
第三章 带马尔科夫链和泊松跳的正倒向系统的最大值原理及其在金融中的应用 | 第87-105页 |
3.1 引言 | 第87-88页 |
3.2 问题描述 | 第88-90页 |
3.3 充分性随机最大值原理 | 第90-93页 |
3.4 与动态规划原理的关系 | 第93-97页 |
3.5 在金融中的应用 | 第97-105页 |
第四章 带马尔科夫链的正倒向超前-延迟系统的最大值原理 | 第105-127页 |
4.1 引言 | 第105-106页 |
4.2 问题描述 | 第106-111页 |
4.3 最优控制的必要性和充分性条件 | 第111-121页 |
4.3.1 最大值原理 | 第111-118页 |
4.3.2 充分性条件 | 第118-121页 |
4.4 在递归效用投资-消费问题中的应用 | 第121-127页 |
参考文献 | 第127-134页 |
攻读博士学位期间发表及完成的论文 | 第134-135页 |
致谢 | 第135-136页 |
学位论文评阅及答辩情况表 | 第136页 |