首页--数理科学和化学论文--数学论文--数学理论论文

彭加勒的数学美学思想与方法

摘要第3-5页
Abstract第5-6页
第1章 绪论第9-13页
    1.1 论文研究背景第9-10页
    1.2 论文研究目的第10-11页
    1.3 国内外研究现状第11-13页
第2章 数学美第13-27页
    2.1 数学与美学的关系第13-18页
        2.1.1 数学美的滥觞第14-15页
        2.1.2 数学美的发展第15-18页
    2.2 彭加勒的数学美学观第18-21页
        2.2.1 数学美在于自然的理性美第18-19页
        2.2.2 对于数学美感受力的重要作用第19-20页
        2.2.3 美的追求是数学创造的动机之一第20-21页
    2.3 数学发现中的美学因素第21-26页
        2.3.1 统一性(和谐性)第21-22页
        2.3.2 简单性第22-24页
        2.3.3 对称性和奇异性第24-26页
    小结第26-27页
第3章 彭加勒的数学美学方法第27-37页
    3.1 发明就是识别、选择第27-30页
        3.1.1 数学创造第27-28页
        3.1.2 发明就是选择第28页
        3.1.3 事实的选择第28-30页
    3.2 假设第30-33页
        3.2.1 假设的作用第30-31页
        3.2.2 假设的分类第31-32页
        3.2.3 辩证看待假设第32-33页
    3.3 直觉思维的重要作用第33-35页
        3.3.1 直觉和逻辑在数学中各司其职第33-34页
        3.3.2 直觉在发明中的作用第34页
        3.3.3 直觉在推理中的作用第34-35页
        3.3.4 直觉在教学中的作用第35页
    小结第35-37页
第4章 彭加勒关于数学发明中心理机制的探究第37-43页
    4.1 无意识思维第37-39页
        4.1.1 灵感第38-39页
        4.1.2 顿悟第39页
    4.2 有意识的工作第39-41页
        4.2.1 准备阶段的有意识工作第40-41页
        4.2.2 最后阶段的有意识工作第41页
    小结第41-43页
结论第43-45页
参考文献第45-49页
致谢第49-51页
攻读硕士学位期间研究成果第51页

论文共51页,点击 下载论文
上一篇:普林斯顿高等研究院科学激励模式述评
下一篇:司法审判中的舆论应对问题研究--以司法审判中的法官为视角