基于QPSO算法的结构参数识别研究
学位论文答辩委员会名单 | 第1-6页 |
摘要 | 第6-7页 |
Abstract | 第7-11页 |
第一章 绪论 | 第11-23页 |
·引言 | 第11-12页 |
·参数识别研究现状 | 第12-21页 |
·结构物理参数识别 | 第13-15页 |
·结构模态参数识别 | 第15-19页 |
·智能算法在结构参数识别中的应用 | 第19-20页 |
·QPSO 研究现状 | 第20-21页 |
·本文研究内容 | 第21-23页 |
第二章 量子行为粒子群优化(QPSO)算法 | 第23-33页 |
·引言 | 第23页 |
·粒子群优化算法 | 第23-27页 |
·基本 PSO 算法 | 第23-25页 |
·标准 PSO 算法 | 第25-26页 |
·标准 PSO 算法的基本计算流程图 | 第26-27页 |
·量子行为粒子群优化(QPSO)算法 | 第27-32页 |
·引入δ 势阱 | 第27-28页 |
·QPSO 算法的进化方程 | 第28-30页 |
·QPSO 算法流程 | 第30-32页 |
·对比 QPSO 算法与 PSO 算法 | 第32页 |
·本章小结 | 第32-33页 |
第三章 QPSO 算法识别结构物理参数 | 第33-42页 |
·引言 | 第33页 |
·结构物理参数时域识别方法 | 第33-34页 |
·基本原理 | 第33-34页 |
·识别算法 | 第34页 |
·QPSO 算法识别结构物理参数原理 | 第34-37页 |
·物理参数识别问题的转化 | 第35-36页 |
·物理参数识别步骤 | 第36-37页 |
·数值模拟 | 第37-41页 |
·本章小结 | 第41-42页 |
第四章 QPSO 算法识别已知激励下结构模态参数 | 第42-65页 |
·引言 | 第42页 |
·基本原理 | 第42-44页 |
·确定目标函数 | 第42-43页 |
·QPSO 算法识别模态参的数基本原理 | 第43-44页 |
·QPSO 识别已知激励下结构模态参数的计算流程 | 第44页 |
·数值模拟 | 第44-63页 |
·激励信号的产生 | 第44-46页 |
·六层剪切型框架结构的模态参数识别 | 第46-57页 |
·简支梁结构模型的模态参数识别 | 第57-63页 |
·本章小结 | 第63-65页 |
第五章 QPSO 算法识别环境激励下结构模态参数 | 第65-95页 |
·引言 | 第65页 |
·基本理论 | 第65-68页 |
·功率谱密度函数 | 第65-66页 |
·功率谱识别模态参数 | 第66-68页 |
·问题转化 | 第68页 |
·计算流程 | 第68-69页 |
·数值模拟 | 第69-94页 |
·六层框架模型 | 第69-77页 |
·简支梁模型 | 第77-86页 |
·三跨连续梁模型 | 第86-94页 |
·本章小结 | 第94-95页 |
第六章 结论与展望 | 第95-97页 |
·本文主要结论 | 第95-96页 |
·研究前景与展望 | 第96-97页 |
参考文献 | 第97-106页 |
致谢 | 第106-107页 |
个人简历 | 第107页 |