摘要 | 第1-5页 |
Abstract | 第5-12页 |
第一章 绪论 | 第12-24页 |
·复杂网络概述 | 第12-17页 |
·复杂网络起源 | 第12-14页 |
·复杂网络的基本概念 | 第14-16页 |
·复杂网络的分类 | 第16-17页 |
·自组织临界性 | 第17-18页 |
·自组织临界现象 | 第17页 |
·自组织临界系统的特点 | 第17-18页 |
·自组织临界性理论的应用 | 第18页 |
·大脑神经元网络简介 | 第18-21页 |
·大脑神经元 | 第18-19页 |
·大脑神经元网络的研究现状 | 第19-20页 |
·大脑神经元网络的特点 | 第20-21页 |
·城市交通网络 | 第21-23页 |
·实际城市交通问题 | 第21页 |
·城市交通网络的研究现状 | 第21-22页 |
·城市交通网络的描述 | 第22页 |
·对偶图上的车辆移动 | 第22-23页 |
·本文的主要内容 | 第23-24页 |
第二章 二维小世界神经元网络的自组织临界性与标度行为 | 第24-39页 |
·引言 | 第24-25页 |
·二维小世界神经元网络研究背景 | 第24-25页 |
·二维神经元网络模型的研究动机 | 第25页 |
·基本概念 | 第25-28页 |
·最小壁垒值分布 | 第25页 |
·雪崩规模 | 第25-26页 |
·首回归时间 | 第26-27页 |
·全回归时间 | 第27页 |
·完全不应期 | 第27页 |
·标度关系 | 第27-28页 |
·基于2D 小世界的大脑神经元网络模型 | 第28-29页 |
·二维小世界网络的描述 | 第28-29页 |
·网络上的动力学过程 | 第29页 |
·数值模拟结果及分析 | 第29-38页 |
·最小壁垒值分布 | 第29-31页 |
·雪崩规模分布 | 第31-33页 |
·首回归时间的概率分布 | 第33-35页 |
·全回归时间分布 | 第35-37页 |
·功率谱 | 第37-38页 |
·小结 | 第38-39页 |
第三章 对偶图上的城市交通研究 | 第39-65页 |
·引言 | 第39-42页 |
·原始图与对偶图的比较 | 第40-41页 |
·对偶图的构建 | 第41-42页 |
·南京市交通图的对偶图及其特性 | 第42-46页 |
·南京市交通图 | 第42-43页 |
·南京市交通图的对偶图 | 第43-44页 |
·对偶图的拓扑结构性质 | 第44-46页 |
·在南京城市交通图的对偶图上模拟车辆的前进 | 第46-64页 |
·车辆移动模型 | 第46-47页 |
·基本概念 | 第47-48页 |
·对偶图上交通模拟的结果 | 第48-54页 |
·网络的负载Nv 随时间的变化 | 第48-51页 |
·到达目的地的车辆数量Nd 随时间T 的变化 | 第51-52页 |
·离开当前节点队列的车辆数量Nm 随时间T 的变化 | 第52-54页 |
·网络负载的时间序列的功率谱 | 第54-57页 |
·全局统计量 | 第57-60页 |
·行驶时间分布 | 第57-58页 |
·等待时间分布 | 第58-60页 |
·网络上的局部动力学及网络的拥塞模式 | 第60-64页 |
·网络上的局部动力学 | 第60-62页 |
·网络上的拥塞模式 | 第62-64页 |
·小结 | 第64-65页 |
第四章 结论与展望 | 第65-67页 |
·结论 | 第65-66页 |
·展望 | 第66-67页 |
参考文献 | 第67-78页 |
致谢 | 第78-79页 |
在学期间的研究成果及发表的学术论文 | 第79页 |