首页--经济论文--财政、金融论文--金融、银行论文--中国金融、银行论文--金融市场论文

Support Vector Classification in Mean-Variance Framework with Applications to Shanghai Stock Exchange Data

摘要第5-6页
Abstract第6页
Abbreviations第12-13页
Symbols第13-15页
1 Introduction第15-25页
    1.1 Research Background第15-18页
    1.2 Research Objectives第18-20页
    1.3 Summary of Research Findings第20-21页
    1.4 Research Methods第21-22页
    1.5 Contributions of Work第22-23页
    1.6 Structure of Thesis第23-25页
2 Literature Review第25-57页
    2.1 Chapter Outline第25页
    2.2 Financial and Investment Theory第25-36页
        2.2.1 Financial Markets第25-27页
        2.2.2 Trading第27-29页
        2.2.3 Modern Portfolio Theory第29-32页
        2.2.4 Criticism of MPT第32-34页
        2.2.5 Portfolio Rebalancing Strategies第34-36页
    2.3 Market Predictability第36-43页
        2.3.1 The Efficient Market Hypothesis第37-42页
        2.3.2 Combining financial time-series prediction and optimal portfolio allocation第42-43页
        2.3.3 Predition-based Portfolio Optimization第43页
    2.4 Machine Learning in Finance第43-55页
        2.4.1 Evolutionary Algorithms第44-48页
        2.4.2 Artificial Neural Networks第48-52页
        2.4.3 Support Vector Machines and Kernel Methods第52-55页
    2.5 Conclusions from Literature Review第55-57页
3 Machine Learning Introduction第57-74页
    3.1 Theory of Machine Learning第57-58页
    3.2 Machine learning paradigm第58-62页
    3.3 Support Vector Machines第62-69页
        3.3.1 Soft-Margin SVM第66-67页
        3.3.2 Kernel Methods第67-69页
    3.4 Hyperparameter Optimization第69-74页
        3.4.1 Grid Search第70-72页
        3.4.2 Cross-validation第72-74页
4 Data and Experimental Plan第74-96页
    4.1 Data and Feature Extraction第74-82页
        4.1.1 Data Representation第74-75页
        4.1.2 Historical Data第75-78页
        4.1.3 Feature Selection第78-82页
    4.2 Experimental Plan第82-96页
        4.2.1 Efficient Portfolio Optimization第83-85页
        4.2.2 Risk Preference Modeling第85-87页
        4.2.3 Heuristic Search for Optimal Solution under Upper Bound Constraints第87-88页
        4.2.4 Backtesting System第88-94页
        4.2.5 Experimental outline第94-96页
5 Experimental Results 82第96-128页
    5.1 Efficient Portfolio Trader第96-107页
        5.1.1 Analysis of Performance Depending on Lookback Interval第97-99页
        5.1.2 Analysis of Performance Depending on Rebalancing Frequency第99-101页
        5.1.3 Analysis of Performance Depending on Risk Preference and Upper Bound第101-107页
    5.2 Support Vector Machine Trader第107-128页
        5.2.1 Analysis of Performance Depending on Risk Preference and Fequency of Relearning第109-113页
        5.2.2 Analysis of Performance Depending on Learning Horizon第113-114页
        5.2.3 Analysis of Performance Depending on Transaction Costs第114-128页
6 Conclusions第128-133页
    6.1 Main Findings第128-130页
    6.2 Limitations of the Study第130-131页
    6.3 Suggestions for Further Research第131-133页
A Tickers of Companies Used in Experiments第133-135页
Bibliography第135-144页
Acknowledgements第144-145页
Curriculum Vitae第145-148页

论文共148页,点击 下载论文
上一篇:泰国农产品国际竞争力实证研究
下一篇:韩国贴牌生产企业经营战略转型影响因子实证研究--以汽车、服装、化妆品行业为例