摘要 | 第1-5页 |
Abstract | 第5-9页 |
1. Introduction and Background | 第9-19页 |
·Empirical Risk Minimization Principle | 第9-13页 |
·Regularization in Learning Theory | 第13-16页 |
·Least Square Regularization | 第16-17页 |
·Outline of the Thesis | 第17-19页 |
2. Empirical Risk Minimization for Regression with Unbounded Sampling | 第19-41页 |
·Settings for Regression with Unbounded Sampling | 第19-22页 |
·Bennet Inequality | 第22-24页 |
·Main Result on the ERM Algorithm | 第24-27页 |
·Error Decomposition for the ERM Algorithm | 第27-29页 |
·Error Term Involving f_z in the ERM Setting | 第29-33页 |
·Estimating the Sample Error and Total Error | 第33-36页 |
·ERM for Classification | 第36-41页 |
3. Regularized Least Square Regression with Unbounded Sampling | 第41-62页 |
·Setting and Learning Rates for Regularization | 第41-43页 |
·Error Decomposition in Regularization | 第43-44页 |
·Sample Error Estimation in Regularization | 第44-54页 |
·Sample error involving the regularizing function | 第44-47页 |
·Sample error term involving f_(z,λ) | 第47-52页 |
·Total sample error and weak estimation of the learning rate | 第52-54页 |
·Iteration and Strong Learning Rate | 第54-59页 |
·Comparison with Previous Results | 第59-62页 |
4. Extensions and Further Study | 第62-66页 |
·Error Analysis with Integral Operators | 第62-63页 |
·Online Learning | 第63-64页 |
·Learning with Non-i.i.d.Sampling | 第64-65页 |
·Semi-Supervised Learning | 第65-66页 |
BIBLIOGRAPHY | 第66-73页 |
Publieations | 第73-74页 |
Acknwoledgement | 第74-75页 |