首页--天文学、地球科学论文--测绘学论文--摄影测量学与测绘遥感论文--测绘遥感技术论文

CANFET方法在遥感诊断中的应用研究

摘要第4-6页
Abstract第6-8页
Chapter 1 Introduction第15-30页
    1.1 Background and Significance of Research第15-17页
    1.2 Literature Review第17-22页
        1.2.1 Related to the theories used to construct CANFET第17-19页
        1.2.2 Related to the existed classifiers in land cover classification第19-22页
    1.3 Research contents and objective第22-28页
        1.3.1 Research contents第22-28页
        1.3.2 Research objective第28页
    1.4 Overview of Dissertation第28-29页
    1.5 Chapter Summary第29-30页
Chapter 2 CANFET and its variations第30-43页
    2.1 Important theories and concepts第30-33页
        2.1.1 Andrews’ plots第30页
        2.1.2 Fuzzification第30-31页
        2.1.3 Dempster-Shafer theory of evidence第31-33页
    2.2 Original CANFET第33-39页
        2.2.1 Andrews’ curve of satellite data第34-35页
        2.2.2 Type of Andrews’ curve dynamic—TAD第35-36页
        2.2.3 Confidence zone and weight第36-38页
        2.2.4 Membership grade acquisition第38页
        2.2.5 Decision making by Dempster-Shafer theory of evidence第38-39页
    2.3 Simplified CANFET第39-40页
        2.3.1 The decision rule for simplified CANFET第40页
    2.4 Direct-matching CANFET第40-42页
        2.4.1 Direct-matching method第41-42页
    2.5 Chapter Summary第42-43页
Chapter 3 Applications第43-65页
    3.1 Crop type classification第43-53页
        3.1.1 Ground and Satellite Data第44-47页
        3.1.2 Results第47-51页
        3.1.3 Discussions & Analysis第51-53页
    3.2 Burnt forest area classification第53-59页
        3.2.1 Study area and Data第53-55页
        3.2.2 Method第55-57页
        3.2.3 Results第57-58页
        3.2.4 Discussions第58-59页
    3.3 Complex land cover area extraction第59-64页
        3.3.1 Satellite and Ground Data第59-60页
        3.3.2 Method第60-61页
        3.3.3 Results第61-64页
        3.3.4 Discussions第64页
    3.4 Chapter Summary第64-65页
Chapter 4 Comparison to existing algorithms第65-75页
    4.1 CANFET vs. traditional classification methods第65-68页
    4.2 CANFET vs. basic machine learning methods第68-74页
        4.2.1 The implementation of the machine-learning classifiers第69-71页
        4.2.2 Results and Discussions第71-74页
    4.3 Chapter Summary第74-75页
Chapter 5 Conclusions and Discussions第75-81页
    5.1 Summary Results第75-78页
        5.1.1 CANFET algorithm and the various versions第75-77页
        5.1.2 Application of the CANFETs and the comparisons to other classifiers第77-78页
    5.2 Research innovations第78-79页
    5.3 Problem and future works第79-81页
References第81-90页
List of Publications during Ph.D. program第90-91页
List of Participated Projects and Research Activities during Ph.D. program第91-93页
Appendix第93-94页
Acknowledgements第94-95页

论文共95页,点击 下载论文
上一篇:基于遥感的旱区生态系统多稳态刻画及其退化早期信号研究
下一篇:面向城市环境的移动感知研究