首页--工业技术论文--能源与动力工程论文--热力工程、热机论文--热力工程理论论文--传热学论文

几类反常扩散与传热问题的分析研究

Thanks and Appreciation第4页
Gratitude第4-5页
摘要第5-6页
Abstract第6-7页
Nomenclature第11-13页
1 Introduction第13-19页
2 Literature review第19-34页
    2.1 Background in heat transfer第19-24页
        2.1.1 Conduction heat transfer processes第20-22页
        2.1.2 Convection heat transfer processes第22-23页
        2.1.3 Radiation heat transfer processes第23-24页
    2.2 Research progress第24-28页
        2.2.1 Reaction-diffusion processes第24-27页
        2.2.2 Heat convection processes第27-28页
    2.3 Basic ideals analytical methods第28-34页
        2.3.1 Adomian decomposition method第28-30页
        2.3.2 Homotopy-perturbation method第30-31页
        2.3.3 Homotopy analysis method第31-34页
3 Study of Fisher-KPP reaction and n-diffusion Cattaneo telegraph equation第34-43页
    3.1 Formulation of the problem第34页
    3.2     Mathematical model第34-35页
    3.3 Adomian decomposition method solution第35-38页
    3.4 Results and discussion第38-43页
4 Study on kinetics of diffusion with effect of external force and Fisher-KPPreaction第43-55页
    4.1 Formulation of the problem第43页
    4.2 Mathematical model第43-44页
    4.3 The application of HPM and ADM in our problem第44-47页
        4.3.1 Homotopy-perturbation method第44-45页
        4.3.2 Adomian decomposition method第45-47页
    4.4 Numerical results and discussion第47-53页
    4.5 Comparison of HPM and ADM results第53-55页
5 Study of Cattaneo telegraph equation with reaction term: effects of relaxtiontime, Philip n-diffusion and thermal diffusivity第55-69页
    5.1 Formulation of the problem第55页
    5.2 Mathematical model and method of solution第55-60页
    5.3 Results and discussion第60-69页
        5.3.1 Case A=0,λ=0第60-65页
        5.3.2 Case A=0,λ≠0第65-67页
        5.3.3 Case A≠0第67-69页
6 Study of Zeldovich Lakov reaction and n -diffusion equation第69-78页
    6.1 Formulation of the problem第69页
    6.2 Mathematical formulation of the problem第69-70页
    6.3 The application of HPM and ADM in the problem第70-73页
        6.3.1 Homotopy-perturbation method第70-71页
        6.3.2 Adomian decomposition method第71-73页
    6.4 Results and discussion第73-78页
7 Study of Boundary layer flow and Heat transfer第78-89页
    7.1 Formulation of the problem第78页
    7.2 Mathematical formulation第78-79页
    7.3 Adomian decomposition method solutions第79-82页
    7.4 Homotopy analysis method solutions第82-83页
    7.5 Results and discussion第83-89页
8 n-Diffusion with reaction term model in porous media第89-97页
    8.1 Formulation of the problem第89页
    8.2 Mathematical formulation of the problem第89-90页
    8.3 Method of solving第90-93页
    8.4 Results and discussion第93-97页
9 Heat transfer model in partially saturated heterogeneous aquifers第97-106页
    9.1 Formulation of the problem第97-98页
    9.2 Mathematical formulation of the problem第98-99页
    9.3 Solving the problem第99-103页
        9.3.1 Adomian decomposition method第99-101页
        9.3.2 Homotopy analysis method第101-103页
    9.4 Results and discussion第103-106页
10 Conclusions第106-109页
References第109-118页
作者简历及在学研究成果第118-121页
学位论文数据集第121页

论文共121页,点击 下载论文
上一篇:基于投入产出网络的全球隐含能源流格局演化研究
下一篇:基于城市增长边界的城市空间扩展及调控研究