首页--工业技术论文--建筑科学论文--建筑材料论文--非金属材料论文--混凝土及混凝土制品论文

超高韧性纤维混凝土材料及其功能梯度结构疲劳性能研究

ACKNOWLEDGEMENTS第6-8页
致谢第8-9页
ABSTRACT第9-10页
摘要第11-32页
CHAPTER 1 INTRODUCTION第32-68页
    1.1 Background第32-34页
    1.2 Ultra-High Toughness Cementitious Composite (UHTCC)第34-44页
        1.2.1 Mechanical Properties of UHTCC第34-38页
        1.2.2 Durability of UHTCC第38-41页
        1.2.3 Practical Application Cases of UHTCC第41-44页
    1.3 Review on Fatigue Behavior of Fiber-Reinforced Concrete and UHTCC第44-52页
        1.3.1 Fatigue Behavior of Fiber-Reinforced Concrete第44-48页
        1.3.2 Fatigue Behavior of UHTCC第48-52页
    1.4 Research Objectives and Thesis Outline第52-57页
        1.4.1 Research Motivation and Objectives第52-53页
        1.4.2 Thesis Outline第53-57页
    References第57-68页
CHAPTER 2 COMPRESSIVE FATIGUE BEHAVIOR OF UHTCC第68-108页
    2.1 Introduction第68页
    2.2 Experimental Program第68-71页
        2.2.1 Specimen Preparation第68-69页
        2.2.2 Testing Methods第69-71页
    2.3 Fatigue Life and Distribution第71-76页
    2.4 Cyclic Creep Curve第76-78页
    2.5 Secondary Strain Rate第78-80页
    2.6 Comparison of Monotonic and Fatigue Deformation第80-82页
    2.7 Probabilistic Model of Fatigue Failure Strain第82-88页
    2.8 Fatigue Damage Mechanism第88-96页
        2.8.1 Fatigue Failure Mode of Specimen第88-89页
        2.8.2 Static and Fatigue Failure Surface第89-91页
        2.8.3 SEM Analysis第91-94页
        2.8.4 Discussion of the Static and Fatigue Damage Process第94-96页
    2.9 Fatigue-induced Fiber Failure Mechanism第96-103页
        2.9.1 Results of XCT Test第97-99页
        2.9.2 SEM Test and Fiber Failure Mechanism第99-103页
    2.10 Conclusions第103-105页
    References第105-108页
CHAPTER 3 FREQUENCY EFFECT ON THE FATIGUE BEHAVIOR OF UHTCC第108-133页
    3.1 Introduction第108-109页
    3.2 Material and Testing Method第109-110页
    3.3 Fatigue Life第110-113页
    3.4 Fiber Failure Modes第113-114页
    3.5 Fatigue Deformation第114-117页
    3.6 Secondary Strain Rate第117-120页
    3.7 Probabilistic Model of Failure Strain第120-129页
    3.8 Conclusions第129-131页
    References第131-133页
CHAPTER 4 FATIGUE DEFORMATION MODEL OF PLAIN AND FIBER-REINFORCED CONCRETE第133-156页
    4.1 Introduction第133-134页
    4.2 Fatigue Deformation Model Based on Weibull Function第134-139页
        4.2.1 Three-Stage Fatigue Deformation and Cumulative Distribution Function第134-135页
        4.2.2 Weibull Function第135-136页
        4.2.3 Fatigue Deformation Model第136-137页
        4.2.4 Model Sensitivity to Its Parameters第137-138页
        4.2.5 Model Application第138-139页
    4.3 Model Validation第139-141页
    4.4 Analysis of Model Parameters第141-147页
        4.4.1 Model Parameters of UHTCC第141-145页
        4.4.2 Model Parameters of Plain Concrete第145-146页
        4.4.3 Discussion第146-147页
    4.5 Deformation-based Method for Fatigue Life Prediction第147-150页
    4.6 Conclusion第150-152页
    References第152-156页
CHAPTER 5 TENSILE FATIGUE BEHAVIOR OF UHTCC第156-178页
    5.1 Introduction第156页
    5.2 Experimental Program第156-158页
    5.3 Crack Pattern第158-159页
    5.4 Fatigue Deformation第159-161页
    5.5 Failure Surface第161-163页
    5.6 Microscopic Investigation第163-164页
    5.7 Fatigue Life and P-S-N Models第164-173页
        5.7.1 Distribution of Tensile Strength and Fatigue Life第164-166页
        5.7.2 P-S-N Models第166-171页
        5.7.3 Comparison of Fatigue Lives第171-173页
    5.8 Conclusion第173-175页
    References第175-178页
CHAPTER 6 STATIC AND FATIGUE BEHAVIORS OF UHTCC FUNCTIONALLY-GRADED STRUCTURES第178-230页
    6.1 Introduction第178-179页
    6.2 Assembled Participating Permanent Formwork Using UHTCC第179-184页
        6.2.1 Design of UHTCC Permanent Formwork第179-181页
        6.2.2 Fabrication of Reinforced Concrete Member Using UHTCC Permanent Formwork for Bending Test第181-182页
        6.2.3 Test Results and Optimization of the Assembled Permanent Formwork第182-184页
    6.3 Reinforced Participating Permanent Formwork Using UHTCC第184-203页
        6.3.1 Design of Reinforced UHTCC Permanent Formwork第184-186页
        6.3.2 Preparation of Beam Specimens Using Reinforced UHTCC Permanent Formwork第186-188页
        6.3.3 Testing Methods and Results第188-191页
        6.3.4 Strain Profiles and Stiffness of Beam Specimens第191-192页
        6.3.5 Analysis of Failure Process of Beam Specimens Based on Digital Image Correlation(DIC)第192-199页
        6.3.6 Theoretical Analysis and Optimization of the Formwork Design第199-203页
        6.3.7 Manufacturing Tolerance第203页
    6.4 Fatigue Behavior of UHTCC Functionally-graded Beam第203-223页
        6.4.1 Experimental Program第203-208页
        6.4.2 Results of Static Tests第208-209页
        6.4.3 Fatigue Life of Reinforced Concrete Beams with UHTCC Layer第209-210页
        6.4.4 Mid-span Deflection and Cracking Modes under Fatigue Loading第210-212页
        6.4.5 Strain Profiles of Beam Specimens第212-213页
        6.4.6 Strain Range of Longitudinal Bar and UHTCC第213-217页
        6.4.7 Fatigue Degradation of UHTCC Layer第217-220页
        6.4.8 Fatigue Strength of Longitudinal Bar第220-221页
        6.4.9 Fatigue Enhancement Mechanism of UHTCC Layer第221-223页
    6.5 Conclusions第223-225页
    References第225-230页
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS第230-236页
    7.1 Concluding Remarks第230-232页
    7.2 Scientific Contributions and Research Impacts第232-233页
    7.3 Recommendations for Future Work第233-236页
CURRICULUM VITAE AND PUBLICATIONS第236-240页

论文共240页,点击 下载论文
上一篇:文化软实力思想与弘扬中国传统文化--基于孔子学院的文化传播工作
下一篇:基于现场实测的大跨度空间结构表面风荷载特性研究