基于嵌入式水鸟的海上地震拖缆运动控制与仿真研究
摘要 | 第1-5页 |
ABSTRACT | 第5-11页 |
第一章 绪论 | 第11-20页 |
·引言 | 第11-14页 |
·研究背景 | 第11-12页 |
·海上地震勘探技术 | 第12-13页 |
·海上地震勘探拖缆系统 | 第13-14页 |
·国内外研究发展状况 | 第14-18页 |
·四维地震技术 | 第14-15页 |
·海上多分量勘探技术 | 第15页 |
·拖缆动态运动研究 | 第15-17页 |
·拖缆系统的运动控制技术 | 第17-18页 |
·国内发展状况 | 第18页 |
·本文研究目的和意义 | 第18-19页 |
·本文主要研究工作 | 第19-20页 |
第二章 海上地震拖缆运动数学模型研究 | 第20-35页 |
·基本坐标系的建立及坐标变换关系 | 第20-22页 |
·坐标系的建立 | 第20页 |
·坐标变换关系 | 第20-22页 |
·拖缆运动数学模型 | 第22-28页 |
·拖缆的动力平衡方程 | 第22-23页 |
·拖缆在水中的重量 | 第23页 |
·拖缆惯性力 | 第23-25页 |
·流体阻力 | 第25页 |
·拖缆张力 | 第25页 |
·拖缆的动力平衡方程 | 第25-26页 |
·拖缆运动方程 | 第26页 |
·拖缆平衡方程 | 第26-27页 |
·稳定直航状态下的简化模型 | 第27-28页 |
·边界条件和初始条件 | 第28-29页 |
·首端边界条件 | 第28-29页 |
·自由尾端边界条件 | 第29页 |
·初始条件 | 第29页 |
·拖缆运动的二维简化模型 | 第29-34页 |
·无定深水鸟作用的二维模型 | 第29-30页 |
·定深水鸟作用下的二维模型 | 第30-32页 |
·模型仿真求解 | 第32-34页 |
·结论分析 | 第34页 |
·本章小结 | 第34-35页 |
第三章 嵌入式水鸟几何模型与数值计算 | 第35-54页 |
·引言 | 第35-46页 |
·水鸟简述 | 第35页 |
·水鸟的分类 | 第35-38页 |
·计算流体力学原理 | 第38-43页 |
·Gambit 简介 | 第43-45页 |
·FLUENT 简介 | 第45-46页 |
·本章研究内容 | 第46页 |
·模型建立 | 第46-48页 |
·水鸟基本参数 | 第46-47页 |
·水鸟几何模型 | 第47-48页 |
·数值计算 | 第48-50页 |
·相关参数设置 | 第49页 |
·边界条件设置 | 第49-50页 |
·计算结果及分析 | 第50-53页 |
·计算结果 | 第50-52页 |
·结论分析 | 第52-53页 |
·本章小结 | 第53-54页 |
第四章 海上地震拖缆定位与控制系统研究 | 第54-68页 |
·引言 | 第54-56页 |
·本章研究内容 | 第56页 |
·海上地震拖缆定位控制系统设计研究 | 第56-63页 |
·系统总体结构 | 第56-57页 |
·系统监控中心 | 第57-58页 |
·数据管理模块(DMU) | 第58-59页 |
·现场节点模块 | 第59-63页 |
·系统数据通信 | 第63-64页 |
·全局控制系统 | 第64-66页 |
·全局控制系统框图 | 第64-65页 |
·全局控制系统功能 | 第65页 |
·全局控制系统工作原理 | 第65-66页 |
·系统工作模式 | 第66-67页 |
·作业模式 | 第66-67页 |
·转向模式 | 第67页 |
·防绞模式 | 第67页 |
·本章小结 | 第67-68页 |
第五章 总结与展望 | 第68-70页 |
·全文总结 | 第68页 |
·研究展望 | 第68-70页 |
参考文献 | 第70-73页 |
攻读硕士期间发表的论文 | 第73-74页 |
致谢 | 第74-76页 |