首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文--人工神经网络与计算论文

Pi-Sigma和Sigma-Pi-Sigma神经网络的正则化方法

ABSTRACT第6-7页
摘要第8-17页
1 Introduction第17-31页
    1.1 History of Artificial Neural Networks第17-18页
    1.2 Components of Artificial Neural Networks第18页
    1.3 Artificial Neurons第18-20页
    1.4 Components of an Artificial Neuron第20-22页
        1.4.1 Weights第20页
        1.4.2 Activation Functions第20-22页
        1.4.3 Bias第22页
        1.4.4 Training of Neural Network第22页
    1.5 A Model of High-Order Neural Networks第22-27页
        1.5.1 Sigma-Pi Neural Networks第23-24页
        1.5.2 Pi-Sigma Neural Networks第24-25页
        1.5.3 Sigma-Pi-Sigma Neural Networks第25-27页
    1.6 Regularization Method第27-28页
    1.7 Objectives and Scope of the Study第28-31页
2 Convergence of Online Gradient Method for Pi-Sigma Neural Networks with Inner-Penalty Terms第31-41页
    2.1 Pi-Sigma Neural Network with Inner-Penalty Algorithm第31-32页
    2.2 Preliminary Lemmas第32-37页
    2.3 Convergence Theorems第37-41页
3 Batch Gradient Method for Training of Pi-Sigma Neural Network with Penalty第41-49页
    3.1 Batch Gradient Method with Penalty Term第41-42页
    3.2 Main Results第42页
    3.3 Simulation Results第42-44页
        3.3.1 Parity Problem第42-43页
        3.3.2 Function Regression Problem第43-44页
    3.4 Proofs第44-49页
4 A Modified Higher-Order Feedforward Neural Network with Smoothing Regularization第49-61页
    4.1 Offline Gradient Method with Smoothing L_(1/2) Regularization第49-51页
        4.1.1 Error Function with L_(1/2) Regularization第49-50页
        4.1.2 Error Function with Smoothing L_(1/2) Regularization第50-51页
    4.2 Main Results第51-52页
    4.3 Numerical Experiments第52-56页
        4.3.1 Classification Problems第52-54页
        4.3.2 Approximation of Gabor Function第54-55页
        4.3.3 Approximation of Mayas Function第55-56页
    4.4 Proofs第56-61页
5 Choice of Multinomials for Sigma-Pi-Sigma Neural Networks第61-79页
    5.1 Introduction第61-62页
    5.2 Description of the Proposed Method第62-69页
        5.2.1 Network Structure第62-65页
        5.2.2 Error Function with L_(1/2) Regularization第65-67页
        5.2.3 Error Function with Smoothing L_(1/2) Regularization第67-69页
    5.3 Algorithm第69-70页
    5.4 Numerical Experiments第70-79页
        5.4.1 Mayas' Function Approximate第70-71页
        5.4.2 Gabor Function Approximate第71-72页
        5.4.3 Sonar Data Classification第72页
        5.4.4 Pima Indians Diabetes Data Classification第72-79页
6 Summary and Further Prospect第79-83页
    6.1 Conclusion第79-80页
    6.2 Innovation Points第80页
    6.3 Further Studies第80-83页
References第83-95页
Published Academic Articles during PhD period第95-97页
Acknowledgements第97-98页
Author Introduction第98页

论文共98页,点击 下载论文
上一篇:非同步经济周期视角下的宏观经济政策国际协调研究
下一篇:秦巴山区农户贫困脆弱性研究:资源禀赋与风险冲击视角