首页--工业技术论文--无线电电子学、电信技术论文--雷达论文--雷达设备、雷达站论文--雷达接收设备论文--数据、图像处理及录取论文

基于视觉显著性和稀疏学习的雷达图像目标检测

摘要第5-7页
ABSTRACT第7-9页
List of Symbols第17-18页
List of Abbreviations第18-24页
Chapter 1 Introduction第24-52页
    1.1 Background and Related Works第25-42页
        1.1.1 SAR Image Target Detection第25-34页
        1.1.2 Selective Visual Attention Modeling第34-41页
        1.1.3 Saliency Inspired SAR Image Target Detection第41-42页
    1.2 Challenges and Contributions第42-49页
        1.2.1 HR Radar Image Target Detection第42-45页
        1.2.2 Complex Scene Saliency Modeling第45-47页
        1.2.3 Saliency Inspired Intelligent SAR Target Detection第47-49页
    1.3 Layout of This Dissertation第49-52页
Chapter 2 Saliency Generation via Digraph and Bayesian Inference第52-72页
    2.1 Digraph and Bayesian Saliency Model第52-63页
        2.1.1 Directed Graph Construction第53-56页
        2.1.2 Path Optimization Algorithm第56-59页
        2.1.3 Color Histogram Based Bayesian Inference第59-63页
    2.2 Experimental Results and Discussions第63-70页
        2.2.1 Performance evaluation on MSRA-1000第63-67页
        2.2.2 Model Verification in Complex Scenes第67-69页
        2.2.3 Application to SAR Image Target Detection第69-70页
    2.3 Summary第70-72页
Chapter 3 Salient Region Detection: A Dictionary Learning Approach第72-94页
    3.1 Dictionary Learning Based Saliency Model第72-84页
        3.1.1 Compact Background Dictionary Learning第74-78页
        3.1.2 Probabilistic Saliency Inference Model第78-82页
        3.1.3 Implementation Details第82-84页
    3.2 Experimental Results and Discussions第84-91页
        3.2.1 Performance Evaluation on MSRA-1000第85-87页
        3.2.2 Performance Evaluation on THUS-10000第87-89页
        3.2.3 Comparative Study and Model Verification第89-90页
        3.2.4 Application to Content-Aware Image Retargeting第90-91页
    3.3 Summary第91-94页
Chapter 4 Hybrid Sparse Optimization for Salient Object Detection第94-116页
    4.1 Hybrid Sparse Saliency Fusion Model第95-105页
        4.1.1 Minimum Span Distance (MSD)第95-99页
        4.1.2 Hybrid Sparse Fusion Model第99-103页
        4.1.3 Object-Level Collaborative Filtering第103-105页
    4.2 Experimental Results and Discussions第105-114页
        4.2.1 Performance Evaluation on THUS-10000 Dataset第105-107页
        4.2.2 Performance Evaluation on DUT OMRON Dataset第107-109页
        4.2.3 Further Insights into the Contour Saliency Metric第109-112页
        4.2.4 Application to Ship Detection in HR SAR Imagery第112-114页
    4.3 Summary第114-116页
Chapter 5 Hierarchical Saliency Filtering for SAR Target Detection第116-136页
    5.1 HSF for Target Detection第116-129页
        5.1.1 Random-Forest-Based Hierarchical Sparse Modelin第117-121页
        5.1.2 CFAR-Based Dynamic Contour Saliency Modeling第121-126页
        5.1.3 Structural Refinement and Implementation Details第126-129页
    5.2 Experimental Results and Discussions第129-134页
        5.2.1 Test on RADARSAT-2 SAR imagery第129-130页
        5.2.2 Test on Airborne SAR imagery第130-132页
        5.2.3 Test on TerraSAR-X imagery第132-133页
        5.2.4 Numerical Evaluation Results第133-134页
    5.3 Summary第134-136页
Chapter 6 Salient CFAR Target Detection in Complex SAR Scenes第136-156页
    6.1 Saliency OL-CFAR Detector第136-147页
        6.1.1 BGS-Based Efficient Proposal Generation第137-142页
        6.1.2 OL-CFAR for Adaptive Target Prescreening第142-145页
        6.1.3 Multi-Layer Integration and Implementation Details第145-147页
    6.2 Experimental Results and Discussions第147-155页
        6.2.1 Test on Strait of Gibraltar SAR Scene第147-149页
        6.2.2 Test on Busy Harbor SAR scene第149-151页
        6.2.3 Test on Bay of Gibraltar SAR Scene第151-152页
        6.2.4 Quantative Evaluation Results第152-155页
    6.3 Summary第155-156页
Chapter 7 Conclusions and Future Work第156-162页
    7.1 Summary of the Contributions第157-158页
    7.2 Directions for Future Research第158-162页
Bibliography第162-174页
Acknowledgements第174-176页
作者简介第176-178页

论文共178页,点击 下载论文
上一篇:不同无线环境下的频谱感知技术研究
下一篇:雷达目标识别与超分辨成像方法研究