基于轮廓的步态识别
创新性声明 | 第1页 |
关于论文使用授权的说明 | 第2-3页 |
摘要 | 第3-4页 |
ABSTRACT | 第4-7页 |
第一章 绪论 | 第7-13页 |
·步态识别简介 | 第7-10页 |
·生物特征识别 | 第7-8页 |
·步态识别 | 第8-10页 |
·步态识别技术的应用前景和研究动态 | 第10-11页 |
·本文的研究内容和章节安排 | 第11-13页 |
第二章 步态识别的理论和方法 | 第13-21页 |
·步态 | 第13-14页 |
·人对步态信息的敏感 | 第14-15页 |
·步态识别系统的结构和关键环节 | 第15-20页 |
·运动分割与步态检测 | 第16页 |
·特征抽取和特征处理 | 第16-19页 |
·分类识别 | 第19页 |
·近期研究成果 | 第19-20页 |
·本章小结 | 第20-21页 |
第三章 步态图像的预处理 | 第21-37页 |
·引言 | 第21页 |
·自适应背景模型 | 第21-26页 |
·基本思想 | 第22-23页 |
·算法实现 | 第23-25页 |
·实验结果 | 第25-26页 |
·运动分割技术简介 | 第26-28页 |
·背景差分图像法 | 第26-27页 |
·图像序列差分法 | 第27页 |
·块匹配法估算运动场 | 第27-28页 |
·背景差分图像法 | 第28-36页 |
·维纳滤波 | 第29-30页 |
·背景获取 | 第30页 |
·阈值分割 | 第30-32页 |
·去除离散点 | 第32-33页 |
·图像后处理 | 第33-34页 |
·提取人体步态轮廓 | 第34-35页 |
·实验结果 | 第35-36页 |
·本章小结 | 第36-37页 |
第四章 步态特征提取和分类识别 | 第37-49页 |
·引言 | 第37-38页 |
·步态轮廓跟踪及关键帧提取 | 第38-40页 |
·人体运动轮廓的分割与跟踪 | 第38-39页 |
·提取运动关键帧 | 第39-40页 |
·特征提取 | 第40-43页 |
·傅立叶描述子表示轮廓特征 | 第40-41页 |
·步态特征的提取 | 第41-42页 |
·特征变换和训练 | 第42-43页 |
·分类识别 | 第43-45页 |
·时空相关度量 | 第43-44页 |
·归一化欧氏距离度量 | 第44页 |
·分类器 | 第44-45页 |
·实验结果 | 第45-48页 |
·步态数据集 | 第45页 |
·训练及测试 | 第45-46页 |
·性能评估与结果分析 | 第46-47页 |
·算法比较 | 第47-48页 |
·本章小结 | 第48-49页 |
结束语 | 第49-51页 |
致谢 | 第51-53页 |
参考文献 | 第53-57页 |
攻读硕士学位期间发表的论文 | 第57页 |