首页--工业技术论文--电工技术论文--独立电源技术(直接发电)论文--化学电源、电池、燃料电池论文--燃料电池论文

聚合物电解质燃料电池电催化剂和电极中的静电作用

摘要第3-4页
Abstract第4-6页
List of symbols第11-15页
Chapter 1 Introduction第15-57页
    1.1 Basics of PEFC第16-24页
        1.1.1 Principles, components and advantages第16-17页
        1.1.2 Evaluation tools, transport and electrochemical processes第17-19页
        1.1.3 A brief history and current status第19-24页
    1.2 Conventional catalyst layer第24-46页
        1.2.1 Preparation methods第24-25页
        1.2.2 Microstructure第25-30页
        1.2.3 Functional properties第30-34页
        1.2.4 Agglomerate model第34-45页
        1.2.5 Key issues on ionomer-free regions第45-46页
    1.3 Ionomer-free catalyst layer第46-54页
        1.3.1 Preparation methods第46-47页
        1.3.2 Microstructure第47页
        1.3.3 Functional properties第47-52页
        1.3.4 Modelling第52-54页
    1.4 Central scientific question and its derivatives第54-55页
    1.5 Outline of this thesis第55-57页
Chapter 2 Non-monotonic surface charging behavior of platinum第57-77页
    2.1 Classical surface charging relation第57-59页
    2.2 Model development第59-70页
        2.2.1 Oxide layer submodel第62-65页
        2.2.2 Water layer submodel第65-68页
        2.2.3 Diffuse layer submodel第68-69页
        2.2.4 Free/total metal surface charge density第69-70页
    2.3 Results and discussion第70-75页
        2.3.1 Model parameterization and discussion on fitted parameters第70-74页
        2.3.2 Comparison of EDL models第74-75页
    2.4 Conclusion第75-77页
Chapter 3 Two faces of adsorbed intermediates in oxygen reduction reaction on Pt electrocatalysts第77-102页
    3.1 Controversy over adsorbed intermediates第78-81页
    3.2 Model development第81-89页
        3.2.1 ORR scheme第81-82页
        3.2.2 Thermodynamics第82-84页
        3.2.3 Kinetics第84-86页
        3.2.4 Coverage of adsorbed intermediates第86-87页
        3.2.5 Metal surface charging第87-88页
        3.2.6 Oxygen diffusion第88-89页
    3.3 Results第89-96页
        3.3.1 Model parameterization第89-90页
        3.3.2 Effect of surface charge on the ORR current第90-91页
        3.3.3 Rate-determining step第91-93页
        3.3.4 Tafel slope第93-95页
        3.3.5 Volcano curve第95-96页
    3.4 Discussion on volcano plot第96-101页
        3.4.1 Root causes第96-98页
        3.4.2 Effects of adsorbed intermediates and surface charge第98-101页
    3.5 Conclusion第101-102页
Chapter 4 Electrostatic phenomena in water-filled Pt nanopores第102-123页
    4.1 Nanoprotonics and surface charge第102-103页
    4.2 Model development第103-108页
        4.2.1 Poisson-Nernst-Plank equations第104-105页
        4.2.2 Metal charging relation第105-106页
        4.2.3 Oxygen reduction reactions第106-107页
        4.2.4 Summary of assumptions第107-108页
    4.3 Numerical simulation and analytical approximation第108-114页
        4.3.1 Model parameterization第108-109页
        4.3.2 Numerical solution第109-110页
        4.3.3 Analytical solution第110-114页
    4.4 Results and discussion第114-121页
        4.4.1 Electrostatic properties第114-116页
        4.4.2 Electrocatalytic performance第116-119页
        4.4.3 Pore size effect第119-121页
    4.5 Conclusion第121-123页
Chapter 5 Particle proximity effect in PEFC electrocatalysts第123-141页
    5.1 Structure-activity relation of Pt electrocatalysts第123-125页
    5.2 Model development第125-131页
        5.2.1 1D array of stripes第126-129页
        5.2.2 2D array of circular disks第129-130页
        5.2.3 Numerical simulation for 3D array of spherical particles第130-131页
    5.3 Results第131-136页
        5.3.0 Metal charging relations第131-132页
        5.3.1 Protonic repelling effect of carbon第132-133页
        5.3.2 Particle proximity effect and parametric analysis第133-136页
    5.4 Discussion第136-139页
        5.4.1 Double-layer overlap regime第136-137页
        5.4.2 Comparison with experiments第137-139页
        5.4.3 A framework bridging nano and macro scales第139页
    5.5 Conclusion第139-141页
Chapter 6 Electrochemical impedance models of Pt electrodes第141-164页
    6.1 EIS studies on Pt electrodes第141-145页
    6.2 Model development第145-152页
        6.2.1 Pt-solution interface第145-148页
        6.2.2 Water-filled Pt nanopore第148-150页
        6.2.3 Porous electrode第150-152页
    6.3 Results and discussion第152-163页
        6.3.1 Pt-solution interface第152-155页
        6.3.2 Water-filled Pt nanopore第155-159页
        6.3.3 Porous electrode第159-161页
        6.3.4 Discussion on experimental studies第161-162页
        6.3.5 Major limitations第162-163页
    6.4 Conclusion第163-164页
Chapter 7 Summary and outlook第164-171页
    7.1 Key contributions and technical implications第164-168页
    7.2 Outlook第168-171页
References第171-189页
Acknowledgement第189-191页
Appendix A DFT simulation of oxidized Pt surface第191-194页
    A.1 DFT computational details第191-192页
    A.2 Discussion on site using DFT calculations第192-194页
Appendix B Derivation of impedance models第194-204页
    B.1 Surface adsorption with sluggish kinetics第194页
    B.2 Simplification of PNP equations第194-196页
    B.3 Rearrangement of proton flux and ORR current terms第196-198页
    B.4 Boundary condition at opening to the PEM第198-199页
    B.5 Solutions of oxygen concentration and proton density第199-200页
    B.6 Solution of nanopore impedance第200-201页
    B.7 Perturbation analysis of the water balance model第201页
    B.8 Blocking electrode case第201-202页
    B.9 Impedance model of a catalyst layer under H2/N2 condition第202-204页
Appendix C EIS measurement of Pt electrodes第204-206页
Curriculum vitae第206-209页

论文共209页,点击 下载论文
上一篇:怒江云南段鱼类多样性与食性特征及其生态环境评价
下一篇:富铀煤灰中铀的赋存特征及其回收技术研究