首页--工业技术论文--自动化技术、计算机技术论文--自动化技术及设备论文--机器人技术论文--机器人论文

输电线路除冰机器人的智能自适应鲁棒跟踪控制方法研究

摘要第5-7页
Abstract第7-9页
CHAPTER 1 INTRODUCTION第18-34页
    1.1 Background and Significance第18-20页
    1.2 Development of De-icing Robot第20-24页
    1.3 Mechanical Structure and Dynamics Model of Transmission Lines De -icingRobot第24-30页
        1.3.1 Mechanical Structure and Operation of De-icing Robot第24-25页
        1.3.2 Dynamics Model of De-icing Robot第25-30页
    1.4 Control Methods for De-icing Robot Manipulator第30-32页
    1.5 Structure of Dissertation第32-34页
CHAPTER 2 ADAPTIVE FUZZY-NEURAL CONTROL UTILIZING SLIDINGMODE BASED LEARNING ALGORITHM FOR ROBOT MANIPULATOR第34-47页
    2.1 Introduction第34-35页
    2.2 Preliminaries第35-37页
        2.2.1 Dynamic Model of Robot Manipulator第35页
        2.2.2 Structure of FWNN第35-37页
    2.3 Design of AFNC Using SMBLA第37-41页
        2.3.1 AFNC Scheme第37-38页
        2.3.2 Sliding Mode-Based Learning Algorithm第38-41页
    2.4 Comparative Simulation Results第41-46页
    2.5 Summary第46-47页
CHAPTER 3 ARTIFICIAL CHEMICAL REACTION OPTIMIZATION ALGORITHM AND NEURAL NETWORK BASED ADAPTIVE CONTROL FORROBOT MANIPULATOR第47-65页
    3.1 Introduction第47-48页
    3.2 Preliminaries第48-51页
        3.2.1 Dynamics Model of Robot manipulator第48-49页
        3.2.2 Structure of RBFNN第49-50页
        3.2.3 ACROA Method第50-51页
    3.3 Design of ARNAC第51-55页
        3.3.1 Defining Control Law第51-52页
        3.3.2 RBFNN Based Adaptive Control (NNBC)第52-53页
        3.3.3 ACROA Based Optimized RBFNN Parameters第53-54页
        3.3.4 Proposed ARNAC System第54-55页
    3.4 Numerical Simulation Results第55-63页
        3.4.1 Computed Torque Control for Robot Manipulator第57-59页
        3.4.2 PD Control for Robot Manipulator第59-60页
        3.4.3 NNBC for Robot Manipulator第60-61页
        3.4.4 ARNAC for Robot Manipulator第61-63页
    3.5 Summary第63-65页
CHAPTER 4 SLIDING MODE CONTROL BASED ON CHEMICAL REACTION OPTMIZATION AND RADIAL BASIS FUNCTIONAL LINK NET FORDE-ICING ROBOT MANIPULATOR第65-90页
    4.1 Introduction第65-67页
    4.2 System Description第67-70页
        4.2.1 Dynamics of Robot Manipulator and Its Properties第67-69页
        4.2.2 Sliding Mode Control第69页
        4.2.3 Defined Control Law第69-70页
    4.3 Design Procedure of CRLSMC第70-79页
        4.3.1 Structure of RBFNN and RBFLN第70-72页
        4.3.2 CRO Algorithm第72-74页
        4.3.3 RBFLN Parameters Optimization Based on CRO第74-76页
        4.3.4 CRLSMC System第76-79页
    4.4 Simulation and Analysis第79-89页
        4.4.1 CTC System for DIRM第80-82页
        4.4.2 PD Control System for DIRM第82-83页
        4.4.3 RNSMC System for DIRM第83-85页
        4.4.4 CRLSMC System for DIRM第85-89页
    4.5 Summary第89-90页
CHAPTER 5 HYBRID ALGORITHM BASED OPTIMIZED FUZZY PROPORTIONAL-INTEGRAL-DIFFERENTIAL CONTROL FOR DEICINGROBOT MANIPULATOR第90-107页
    5.1 Introduction第90-91页
    5.2 Fuzzy PID Controller for Deicing Robot第91-95页
        5.2.1 Dynamics Model of Deicing Robot第91-92页
        5.2.2 Fuzzy PID Controller第92-95页
    5.3 HP-CRO Based Tuning Method第95-99页
        5.3.1 HP-CRO Algorithm第95-96页
        5.3.2 Molecule Representation第96-97页
        5.3.3 Defining Fitness Function第97-98页
        5.3.4 Searching Procedure第98-99页
    5.4 Comparative Simulation and Discussion第99-105页
        5.4.1 Deicing Robot System Setup第99-100页
        5.4.2 Tuning Fuzzy-PIDC第100-102页
        5.4.3 Simulation Results第102-105页
    5.5 Summary第105-107页
CHAPTER 6 ADAPTIVE ROBUST SLIDING TRACKING CONTROL USING RECURRENT FUZZY WAVELET FUNCTIONAL LINK NET FOR POWERLINE DE-ICING ROBOT MANIPULATOR第107-129页
    6.1 Introduction第107-108页
    6.2 Preliminaries第108-111页
        6.2.1 Dynamic Model of PLDRM第108-109页
        6.2.2 Structure of RFWLN第109-111页
    6.3 Design of ARSTC Using RFWLN第111-118页
        6.3.1 Sliding Tracking Control第111-112页
        6.3.2 Approximation of RFWLN第112-114页
        6.3.3 ARSTC Law第114-116页
        6.3.4 Stability Analysis第116-118页
    6.4 Numerical Simulation and Experimental Results第118-128页
        6.4.1 Numerical Simulation第118-125页
        6.4.2 Experimental Results第125-128页
    6.5 Summary第128-129页
Conclusions and Future Works第129-132页
References第132-144页
Appendix: Author’s Publication第144-145页
Acknowledgements第145页

论文共145页,点击 下载论文
上一篇:泵腔径向间隙对多级离心泵水力及噪声性能的影响
下一篇:特种工程用紧凑型磁力泵的开发与研究