首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

Multiview Face Detection Using Six Segmented Rectangular Filters and Skin Tone Information

Abstract第4页
摘要第5-8页
Acknowledgement第8-14页
List of figures第14-15页
Chapter 1 Introduction第15-20页
    1.1 General idea第15-16页
    1.2 The chosen approach第16页
    1.3 Overview of the thesis第16-20页
        1.3.1 Problem statement第16-17页
        1.3.2 Motivation第17页
        1.3.3 Limitation第17页
        1.3.4 Contributions第17-19页
        1.3.5 Thesis Outline第19-20页
Chapter 2 Background of Face Detection第20-37页
    2.1 Introduction第20页
    2.2 Related fields第20-21页
    2.3 Challenges in detecting face第21页
    2.4 Methods of face detections第21-32页
        2.4.1.Feature based approach第22-26页
            2.4.1.1 Knowledge-based methods第23-24页
            2.4.1.2 Template matching methods第24页
            2.4.1.3 Feature invariant approaches第24-25页
            2.4.1.4 The color-based approach第25-26页
        2.4.2.Appearance-based(image-based)methods第26-32页
            2.4.2.1 Neural Network第27-29页
            2.4.2.2 Support Vector Machine第29-30页
            2.4.2.3 Eigenfaces第30-32页
    2.5 Research in face detection第32-33页
    2.6 Face detection system evaluation第33-34页
    2.7 Benchmark Sets and Counting Criteria第34-37页
Chapter 3 Getting skin color information第37-51页
    3.1 Introduction第37-38页
    3.2 Challenges in skin color detection第38页
    3.3 Build a skin color model第38页
    3.4 Color Spaces used for Skin Modeling and Detection第38-45页
        3.4.1 RGB Color Space第39-41页
            3.4.1.1 Linear and non-linear RGB spaces第40-41页
            3.4.1.2 Normalised RGB第41页
        3.4.2 The CMY and CMYK color models第41-42页
        3.4.3 The HSI color model第42-43页
        3.4.4 YCbCr Color space第43-45页
    3.5 Comparison of Color Space for Skin Colour Detection第45-47页
    3.6 Skin color segmentation and region merging第47-51页
Chapter 4.Multi-view Face detection using skin color information and six segmented filters第51-70页
    4.1 Introduction第51-52页
        4.1.1 Choice of method第51-52页
    4.2 Lighting compensation第52页
    4.3 Skin-tone region segmentation第52-53页
    4.4 Clearing of skin-tone regions第53-54页
    4.5 Features and Integral Image第54-58页
        4.5.1 Face detection formulated as a binary classification task第54页
        4.5.2 Haar like features第54-56页
        4.5.3 Integral Image technique第56-57页
        4.5.4 Six segmented Features第57-58页
    4.6 The motivation第58-60页
    4.7 Learning with AdaBoost第60-64页
        4.7.1 Introduction第60页
        4.7.2 Advantages over other learning algorithms第60-62页
        4.7.3 Constructing Weak Classifiers第62-63页
        4.7.4 Boosting Strong Classifier第63-64页
    4.8 Classification in Cascade第64-66页
        4.8.1 Viola-Jones Classifier Theory第65-66页
    4.9 Multiview Face Detection第66-70页
        4.9.1 Related works第67-70页
Chapter 5 Experiments and Results第70-74页
    5.1 Datasets第70-73页
    5.2 Training第73页
    5.3 Examples of detection results第73-74页
Chapter 6 Conclusions and Future Work第74-75页
References第75-80页
Publications and achievement第80页

论文共80页,点击 下载论文
上一篇:Fabrication of Al/Ti Reactive Multilayer Films and Their Reaction Characteristics
下一篇:On Classroom Communication in FLT from a Semiotic Perspective