首页--数理科学和化学论文--数学论文--数学分析论文--泛函分析论文

拟周期薛定谔算子的谱分析

摘要第4-5页
Abstract第5页
Chapter 1 Introduction第9-13页
    1.1 Discrete Schrodinger operators第9页
    1.2 Motivation and Background第9-13页
Chapter 2 Quantitative continuity of singular continuous spectral measuresand arithmetic criteria第13-59页
    2.1 Introduction第13-27页
        2.1.1 Main application第17页
        2.1.2 Spectral singularity, continuity and proof of Theorem 2.1.4第17-20页
        2.1.3 Relation with other dimensions;Corollaries for the AMO,S-turmian potentials, and Transport exponents第20-24页
        2.1.4 Preliminaries第24-27页
    2.2 Spectral Continuity第27-44页
        2.2.1 Proof of Theorem 2.1.6第27-31页
        2.2.2 Proof of Theorem 2.2.1第31-32页
        2.2.3 The hyperbolic case: Proof of Lemma 2.7第32-37页
        2.2.4 Energies with Trace close to 2: Proof of Lemma 2.8第37-43页
        2.2.5 Proof of Lemmas 2.5 and 2.6第43-44页
    2.3 Spectral Singularity第44-51页
        2.3.1 Power law estimates and proof of Theorem 2.1.5第44-48页
        2.3.2 Proof of the density lemmas第48-51页
    2.4 Sturmian Hamiltonian第51-53页
    2.5 Appendix 1: Proof of Lemma 2.10:第53-54页
    2.6 Appendix2: Proof of Lemma 2.13 and Lemma 2.14第54-55页
    2.7 Appendix3: Some estimates on matrix products第55-56页
    2.8 Appendix4: Extended Schnol's Theorem (Lemma 2.9)第56-59页
Chapter 3 Holder Continuity of the Lyapunov Exponent for Analytic Quasiperi-odic Schrodinger Cocycle with Weak Liouville Frequency第59-81页
    3.1 Introduction and the Main result第59-66页
    3.2 Proof of the Refined Large Deviation Theorem第66-71页
    3.3 Appendix 1: Proof of Theorem 3.2第71-77页
    3.4 Appendix 2: Proof of Lemma 3.7,3.8第77-81页
Chapter 4 Mixed spectral types for the one frequency discrete quasi-periodicSchrodinger operator第81-87页
    4.1 Introduction第81-83页
    4.2 Singular spectrum in the positive Lyapunov exponent region第83-84页
    4.3 Absolutely continuous spectrum near the bottom第84-87页
Bibliography第87-93页

论文共93页,点击 下载论文
上一篇:以社会主义核心价值观凝聚社会共识研究
下一篇:中间产品进口对我国高技术产品出口技术复杂度的影响研究