基于蚁群算法的异构数据集成动态调度优化研究
摘要 | 第1-5页 |
ABSTRACT | 第5-10页 |
第一章 绪论 | 第10-20页 |
·研究课题目的与意义 | 第10-12页 |
·调度优化的研究现状 | 第12-13页 |
·蚁群算法的研究动态 | 第13-18页 |
·蚁群算法的发展过程 | 第13-14页 |
·蚁群算法的基本特性 | 第14-15页 |
·蚁群算法的研究现状及未来研究 | 第15-17页 |
·蚁群算法的应用 | 第17-18页 |
·本文的研究内容和章节安排 | 第18-20页 |
第二章 异构数据集成与相关技术 | 第20-43页 |
·异构数据集成 | 第20-22页 |
·异构数据和数据集成 | 第20页 |
·现实环境中数据集成面临的问题 | 第20-21页 |
·仓库法和虚拟法 | 第21-22页 |
·查询处理流程图 | 第22-29页 |
·异构信息集成系统中的有关概念 | 第22-25页 |
·查询调度优化操作定义 | 第25-29页 |
·调度优化的二种方法 | 第29-41页 |
·影响调度优化的因素 | 第30页 |
·静态统计特征 | 第30-31页 |
·静态调度优化 | 第31-37页 |
·基本原理 | 第31-32页 |
·权函数的定义 | 第32-33页 |
·由连接图生成最小生成树 | 第33-34页 |
·由最小生成树得到连接运算的近似最优执行计划 | 第34-35页 |
·实例分析 | 第35-37页 |
·动态调度优化 | 第37-41页 |
·基本原理 | 第37-38页 |
·权函数的定义 | 第38-39页 |
·阈值的确定 | 第39-41页 |
·实例分析 | 第41页 |
·本章小结 | 第41-43页 |
第三章 蚁群算法基本模型及其特点 | 第43-49页 |
·引言 | 第43页 |
·蚁群算法基本模型描述 | 第43-46页 |
·基本模型的原理 | 第43-44页 |
·基本模型的描述 | 第44-46页 |
·基本蚁群算法模型的实现 | 第46-48页 |
·本章小结 | 第48-49页 |
第四章 蚁群算法在异构数据集成调度优化中的应用 | 第49-60页 |
·问题概述 | 第49页 |
·解决思路 | 第49-51页 |
·基于蚁群算法的异构数据集成调度算法 | 第51-59页 |
·初始化参数 | 第51-52页 |
·生成代价矩阵 | 第52-53页 |
·随机选择起点 | 第53页 |
·计算转移概率 | 第53-54页 |
·计算局部最优路径 | 第54-55页 |
·局部信息素更新 | 第54-55页 |
·全局更新信息素 | 第55页 |
·物化策略 | 第55-57页 |
·分域求解策略 | 第57-58页 |
·算法设计 | 第58-59页 |
·本章小结 | 第59-60页 |
第五章 实验及结果分析 | 第60-67页 |
·算法性能比较 | 第60-64页 |
·调度优化仿真实验设计 | 第60-61页 |
·实验结果 | 第61-64页 |
·MS对算法的影响 | 第64-65页 |
·实验结果 | 第64-65页 |
·DS策略对算法的影响 | 第65-66页 |
·本章小结 | 第66-67页 |
第六章 总结与展望 | 第67-70页 |
·本文的工作总结 | 第67页 |
·今后的研究方向 | 第67-70页 |
参考文献 | 第70-74页 |
附录 | 第74-78页 |
致谢 | 第78-80页 |
攻读学位期间发表的学术论文 | 第80页 |