| 摘要 | 第1-6页 |
| ABSTRACT | 第6-8页 |
| 目录 | 第8-10页 |
| 1 绪论 | 第10-13页 |
| ·引言 | 第10-11页 |
| ·相关定义 | 第11页 |
| ·经典结论回顾 | 第11-13页 |
| 2 零点奇性函数的加权 BASKAKOV 算子逼近 | 第13-19页 |
| ·问题的引入 | 第13-14页 |
| ·预备定理 | 第14页 |
| ·相关引理及证明 | 第14-16页 |
| ·定理的证明 | 第16-19页 |
| 3 内部奇性函数的加权 BASKAKOV 算子逼近 | 第19-26页 |
| ·相关定义 | 第19-20页 |
| ·预备定理 | 第20页 |
| ·相关引理及证明 | 第20-21页 |
| ·定理的证明 | 第21-26页 |
| 4 Q-BASKAKOV 算子对奇性函数的逼近性质 | 第26-37页 |
| ·问题的引入 | 第26页 |
| ·相关定义 | 第26-28页 |
| ·预备结果 | 第28页 |
| ·相关引理及证明 | 第28-30页 |
| ·定理的证明 | 第30-37页 |
| 5 乘积型 BASKAKOV 算子 | 第37-42页 |
| ·问题的引入 | 第37页 |
| ·预备结果 | 第37-38页 |
| ·定理的证明 | 第38-42页 |
| 6 总结与展望 | 第42-43页 |
| 致谢 | 第43-44页 |
| 参考文献 | 第44-47页 |
| 附录 | 第47页 |