首页--工业技术论文--无线电电子学、电信技术论文--基本电子电路论文--振荡技术、振荡器论文--振荡技术论文--谐振论文

利用声子晶体减小锚点损耗的高频MEMS谐振器的性能研究

摘要第5-7页
ABSTRACT第7-8页
Chapter 1 Introduction第16-24页
    1.1 Research Background and Significance第16-17页
    1.2 State of Arts第17-21页
    1.3 Contents and motivations of thesis第21-22页
    1.4 Outline of thesis第22-24页
Chapter 2 Theoretical basics第24-45页
    2.1 Piezoelectricity Theory and Piezoelectric MEMS Resonators第24-27页
        2.1.1 Piezoelectricity: early application and principles第24-25页
        2.1.2 Piezoelectricity: mathematical expression第25-26页
        2.1.3 Types of piezoelectric materials第26-27页
    2.2 Resonator mechanical-electrical model and equivalent electrical parameter第27-33页
        2.2.1 One-port resonator model第29-31页
        2.2.2 Two-port resonator Model第31-33页
    2.3 Phononic Crystals第33页
        2.3.1 Introduction第33页
        2.3.2 Crystallography arrangement第33页
    2.4 Theory of phononic crystals第33-39页
        2.4.1 Energy band structure, Bloch theorem, theory and mechanism of openingband gap第34-35页
        2.4.2 Phononic Crystals categories第35-39页
    2.5 Phononic Crystal application in MEMS based devices第39-43页
        2.5.1 Phononic Crystals-based support tethers configuration第40-41页
        2.5.2 Phononic Crystals -based resonators第41-42页
        2.5.3 Phononic Crystals-based waveguide and filters第42-43页
    2.6 Reflectors第43-45页
Chapter 3 Thin-film piezoelectric-on-substrate technology and simulation tools第45-69页
    3.1 Introduction第45-46页
    3.2 Piezoelectric on Substrate第46页
    3.3 Figure-of-merit of performance of MEMS resonators第46-54页
        3.3.1 Quality Factor第46-48页
        3.3.2 Power Handling第48-50页
        3.3.3 Resonant frequency第50-51页
        3.3.4 Motional resistance第51-52页
        3.3.5 Nonlinearity第52-53页
        3.3.6 Frequency stability第53-54页
    3.4 Thin-film-piezoelectric-on-silicon based MEMS resonators第54-56页
    3.5 Total Quality factor and Anchor Quality Factor第56-57页
    3.6 Energy loss mechanisms in MEMS resonator第57-60页
        3.6.1 Anchor loss第58页
        3.6.2 Thermo-elastic loss第58-59页
        3.6.3 Electrode loss第59页
        3.6.4 Interface loss第59-60页
        3.6.5 Material loss第60页
        3.6.6 Air loss第60页
    3.7 Band gap, dispersion curves and power transmission spectra in PnC第60-62页
    3.8 analysis tools for acoustic wave propagation and MEMS devices第62-64页
        3.8.1 Plane Wave Expansion method第62-63页
        3.8.2 Finite-Difference Time-Domain method第63页
        3.8.3 Simulation tool based on finite element method (FEM)第63-64页
    3.9 COMSOL Multiphysics第64-69页
        3.9.1 Eigenfrequency analysis第67页
        3.9.2 Frequency domain analysis第67-68页
        3.9.3 Parametric sweep第68-69页
Chapter 4 Designing and Simulation Results of Cross-shaped PnC for anchor lossreduction of thin-film ALN-on-silicon high frequency MEMS resonator第69-88页
    4.1 Introduction第69-70页
    4.2 Thin-film ALN-on-silicon high frequency MEMS resonator design第70-71页
    4.3 Summary of design parameters第71-72页
    4.4 Simulation results and discussion第72-81页
        4.4.1 Eigenmode shapes of the resonators第72-73页
        4.4.2 Band gaps in cross-shaped PnC structure第73-79页
        4.4.3 Band gab calculation第79页
        4.4.4 Quality factor of the resonators第79-80页
        4.4.5 Harmonic response of the resonator第80-81页
    4.5 T-shape PnC with lattice constant a=20μm第81-83页
    4.6 T-shaped PnC with lattice constant a=5μm第83-84页
    4.7 T-shaped PnC with lattice constant a=10μm第84-85页
    4.8 Applying T-shape PnC on the Resonator第85页
    4.9 Harmonic response of the resonator第85-86页
    4.10 Conclusion第86-88页
Chapter 5 Conclusions第88-90页
    5.1 Concluding Remarks第88页
    5.2 Future work第88-90页
Acknowledgements第90-91页
References第91-104页
Research Result Obtained During the Study for Master Degree第104页

论文共104页,点击 下载论文
上一篇:一种高精度轨到轨输入输出运算放大器的研究与设计
下一篇:CMOS太赫兹双频探测器及线阵性能研究