摘要 | 第1-4页 |
ABSTRACT | 第4-8页 |
第一章 绪论 | 第8-17页 |
·人耳识别研究目的及意义 | 第8-10页 |
·人耳识别的特点 | 第10页 |
·人耳识别研究现状 | 第10-15页 |
·本文主要研究内容 | 第15-16页 |
·章节安排 | 第16-17页 |
第二章 人耳Zernike Wavelet矩特征快速提取 | 第17-35页 |
·概述 | 第17-18页 |
·人耳图像预处理 | 第18-22页 |
·去噪处理 | 第19-20页 |
·归一化处理 | 第20-22页 |
·Zernike矩 | 第22-24页 |
·Zernike矩的基本概念 | 第22-23页 |
·Zernike矩有关性质 | 第23-24页 |
·Wavelet矩 | 第24-27页 |
·Zernike Wavelet矩特征快速提取 | 第27-29页 |
·实验结果 | 第29-35页 |
第三章 人耳PoSVD特征提取 | 第35-42页 |
·概述 | 第35-36页 |
·奇异值分解(SVD) | 第36-39页 |
·SVD定理和性质 | 第36-37页 |
·奇异值特征降维压缩 | 第37-39页 |
·奇异值特征标准化 | 第39页 |
·人耳PoSVD特征提取 | 第39-41页 |
·实验结果 | 第41-42页 |
第四章 人耳多特征融合选取 | 第42-51页 |
·概述 | 第42-43页 |
·人耳多特征融合 | 第43-44页 |
·人耳特征选取 | 第44-49页 |
·概率信息距离方法(PIDC) | 第45-46页 |
·概率信息距离评判准则函数(PIDF) | 第46-47页 |
·基于PIDF动态规划的特征选取方法(PIDFDP) | 第47-49页 |
·实验结果 | 第49-51页 |
第五章 基于仿生模式识别的人耳识别 | 第51-66页 |
·概述 | 第51-52页 |
·仿生模式识别(BPR) | 第52-55页 |
·仿生模式识别与传统模式识别的差异 | 第52-53页 |
·仿生模式识别数学理论基础 | 第53-55页 |
·仿生模式识别神经网络 | 第55-60页 |
·神经元的多维空间几何对应 | 第55-56页 |
·多权值神经元网络与高维空间封闭超曲面 | 第56-60页 |
·有指导组合双权值神经网络分类器(CTWNN) | 第60-64页 |
·超椭球双权值神经网络 | 第61-62页 |
·基于K均值聚类指导的组合神经网络训练 | 第62-64页 |
·实验结果 | 第64-66页 |
第六章 结论与展望 | 第66-68页 |
·本文工作总结 | 第66-67页 |
·未来工作的展望 | 第67-68页 |
参考文献 | 第68-75页 |
致谢 | 第75-76页 |
攻读学位期间的主要研究成果 | 第76页 |