摘要 | 第1-5页 |
ABSTRACT | 第5-8页 |
第一章 绪论 | 第8-12页 |
·论文的研究背景及选题意义 | 第8-9页 |
·WEB使用记录挖掘研究现状 | 第9-11页 |
·本文结构和组织 | 第11-12页 |
第二章 聚类分析技术基础 | 第12-22页 |
·聚类分析概念 | 第12-15页 |
·数据挖掘对聚类的要求 | 第12-13页 |
·聚类分析中的数据类型 | 第13-14页 |
·主要聚类方法的分类 | 第14页 |
·层次聚类算法 | 第14-15页 |
·模糊聚类 | 第15-21页 |
·模糊聚类基础 | 第15-16页 |
·模糊等价关系的传递闭包法 | 第16-17页 |
·模糊相似关系的最大树法 | 第17-18页 |
·模糊K均值 | 第18-21页 |
·小结 | 第21-22页 |
第三章 WEB数据预处理 | 第22-31页 |
·日志文件 | 第22-24页 |
·数据预处理的一般过程 | 第24-26页 |
·数据清理(Data Cleaning) | 第24-25页 |
·用户识别(User Identification) | 第25页 |
·会话识别(Session Identification) | 第25-26页 |
·路径补充(Path Completion) | 第26页 |
·预处理过程的改进 | 第26-29页 |
·问题的提出 | 第26-27页 |
·页面算法的改进 | 第27-29页 |
·实验结果 | 第29-31页 |
第四章 基于模糊聚类的用户分析 | 第31-41页 |
·算法模型 | 第31页 |
·算法描述 | 第31-36页 |
·从Web日志生成Web事务集合 | 第31-32页 |
·创建模糊矩阵 | 第32-33页 |
·改进的聚类算法描述 | 第33-34页 |
·处理新增数据 | 第34-35页 |
·增量算法描述 | 第35-36页 |
·实验验证 | 第36-40页 |
·数据源 | 第36-38页 |
·构造相异矩阵 | 第38页 |
·层次聚类 | 第38页 |
·求等价矩阵 | 第38-39页 |
·算法性能分析 | 第39-40页 |
·小结 | 第40-41页 |
第五章 总结与展望 | 第41-43页 |
参考文献 | 第43-47页 |
攻读硕士学位期间发表的论文 | 第47-48页 |
致谢 | 第48页 |