首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文--自动推理、机器学习论文

稀疏学习机及其在高光谱影像分类中的应用

ABSTRACT第5-6页
摘要第7-18页
List of Abbreviations第18-20页
缩略语对照表第20-29页
Chapter 1 Introduction第29-43页
    1.1 Research Backgrounds and Significances第29-33页
    1.2 Research Status at Home and Abroad第33-37页
        1.2.1 Researches on Generative Model第34页
        1.2.2 Researches on Discriminative Model第34-36页
        1.2.3 Researches on Sparse Coding based Classifier第36-37页
    1.3 Research Motivations and Purposes第37-40页
    1.4 Innovations and Structure Arrangements第40-43页
        1.4.1 Innovations第40-41页
        1.4.2 Structure Arrangement第41-43页
Chapter 2 Mathematical Foundation of Sparse Learning Machine第43-53页
    2.1 Notations第43-44页
    2.2 The Method of Constructing Sparse Learning Machine第44-47页
    2.3 Generalization Bound of Sparse Learning Machine第47-52页
    2.4 Conclusion第52-53页
Chapter 3 Sparse LS-SVM via Coupled Compressive Pruning第53-69页
    3.1 Sparse LS-SVM via Coupled Compressive Pruning第53-56页
        3.1.1 Compressive Sampling第53-54页
        3.1.2 Coupled Compressive Pruning for Sparse LS-SVM第54-56页
    3.2 Experimental Results and Analysis第56-67页
        3.2.1 Benchmark Datasets第57-58页
        3.2.2 Experiment 1:Performance of CP-LSSVM Using Different Recov-ery Algorithms on Sinc Data第58-61页
        3.2.3 Experiment 2: Performance of CP-LSSVM under Different Sparsityon Sinc and Two-Spiral Data第61-62页
        3.2.4 Experiment 3:Performance of CCP-LSSVM with the Variation ofMeasurement Matrix Size on Sinc Data第62-64页
        3.2.5 Experiment 4: Comparison of Our Method with Other Related Prun-ing Methods on UCI Data第64-66页
        3.2.6 Experiment 5:Test on the Robustness of CP-LSSVM and CCP-LSSVM第66-67页
    3.3 Conclusion第67-69页
Chapter 4 Sparse LS-SVM for HIC第69-85页
    4.1 Sparse LS-SVM第69-73页
        4.1.1 Sparse LS-SVM via MMV第69-72页
        4.1.2 Sparse LS-SVM via Coupled Compressed Sensing第72-73页
    4.2 Experimental Results and Analysis第73-83页
        4.2.1 Benchmark Hyperspectral Imageries第74-76页
        4.2.2 Experiment 1:Comparison with SS-SVM and SS-LSSVM第76-78页
        4.2.3 Experiment 2: Comparison of Different Spatial Information Acqui-sition Methods第78-81页
        4.2.4 Experiment 3:Performance of CCS4-LSSVM with the Variation ofσ and μ第81-83页
    4.3 Conclusion第83-85页
Chapter 5 Sparse LapSVM for HIC第85-103页
    5.1 Sparse LapSVM for HIC第85-93页
        5.1.1 LapSVM for HIC第85-88页
        5.1.2 Kernel Propagation第88-91页
        5.1.3 Compressed Sensing based Sparse LapSVM第91-93页
    5.2 Experimental Results and Discussions第93-100页
        5.2.1 Experiment 1:Investigation of the Algorithmic Performances第93-96页
        5.2.2 Experiment 2: Performance of SS-LapSVM for Different Numberof Labeled Pixels第96-98页
        5.2.3 Experiment 3:Performance of S3LapSVM-KP with the Variation ofWindowwidth and μ第98-100页
        5.2.4 Experiment 4: Performance of S3LapSVM-KP with the Variation ofSparsity第100页
    5.3 Conclusion第100-103页
Chapter 6 SCC-SNT for HIC第103-119页
    6.1 SCC-SNT for HIC第103-109页
        6.1.1 Tensor Algebra第103-104页
        6.1.2 Related Sparse Coding based Classifier第104-106页
        6.1.3 Sparse Coding based Classifier with Spatial Neighbor Tensor第106-109页
    6.2 Experimental Results and Analysis第109-113页
        6.2.1 Experiment 1:Investigation of the Algorithmic Performances第109-111页
        6.2.2 Experiment 2: Investigation of the Number of Training Pixels第111-112页
        6.2.3 Experiment 3:Investigation of the Compressive Sampling Ratios 846.2.4 Experiment 4: Investigation of the Parameters T and S第112-113页
    6.3 Conclusion第113-119页
Chapter 7 HPSCC-SNT for HIC第119-133页
    7.1 HPSCC-SNT第119-122页
    7.2 Experimental Results and Analysis第122-131页
        7.2.1 Investigation of the Algorithmic Performances第122-128页
        7.2.2 Performance of HPSCC-SNT with Different Number of TrainingPixels第128-129页
        7.2.3 Performance of HPSCC-SNT with the Variation of Parameter T第129-131页
    7.3 Conclusion第131-133页
Chapter 8 Summarization and Prospect第133-135页
    8.1 Summarization第133-134页
    8.2 Prospect第134-135页
Bibliography第135-143页
Acknowledgements第143-145页
致谢第145-146页
Resume第146-148页

论文共148页,点击 下载论文
上一篇:三棱锥/空心半球型钝体微燃烧器内甲烷催化燃烧特性数值研究
下一篇:柴油机装配线非标翻转装备设计与研究