首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机的应用论文--信息处理(信息加工)论文--模式识别与装置论文

Visual Object Tracking Using Color and Texture Features Based on Mean-shift and Particle-kalman Filter Algorithm

ABSTRACT第5页
Chapter 1 – Introduction第11-24页
    1.1 Research Background第11-13页
    1.2 Overview of Intelligent Video Surveillance System第13页
    1.3 Important Key Steps in Intelligent Video Surveillance System第13-17页
        1.3.1 Object detection第15页
        1.3.2 Object classification第15页
        1.3.3 Object tracking第15-16页
        1.3.4 Object analysis第16-17页
    1.4 The Importance of Object Tracking第17页
    1.5 Previous Works第17-21页
    1.6 Research Objectives第21-22页
    1.7 Structure of the Thesis第22-24页
Chapter 2 – Challenges in Object Tracking and Several Conventional Object Tracking Algorithms第24-41页
    2.1 Chapter Introduction第24页
    2.2 Challenges in Object Tracking第24-26页
        2.2.1 Illumination variation第24页
        2.2.2 Non-rigid object第24-25页
        2.2.3 Non-linear motion第25页
        2.2.4 Occlusion第25页
        2.2.5 Background Clutter第25-26页
        2.2.6 Real-time processing requirement第26页
    2.3 Features Selection in Object Tracking第26-28页
        2.3.1 Color feature: RGB and HSV Histogram第26-27页
        2.3.2 Texture feature: Local Binary Pattern (LBP)第27-28页
    2.4 Conventional Object Tracking Algorithm第28-36页
        2.4.1 Mean-shift第28-32页
        2.4.2 Kalman Filter第32-34页
        2.4.3 Particle Filter第34-36页
    2.5 Combination of Conventional Object Tracking Algorithms第36-40页
        2.5.1 Combination of Mean-shift and Kalman Filter algorithm (MKF)第36-37页
        2.5.2 Combination of Mean-shift and Particle filter algorithm (MPF)第37-39页
        2.5.3 Combination of Particle Filter and Kalman Filter algorithm (PKF)第39-40页
    2.6 Chapter Summary第40-41页
Chapter 3 - Visual Object Tracking Using Color and Texture Features Based on Mean-shift and Particle-Kalman Filter Algorithm第41-55页
    3.1 Chapter Introduction第41-43页
    3.2 Flowchart Diagram of the Proposed Algorithm第43-54页
        3.2.1 Input第43页
        3.2.2 Target Model Initialization第43-47页
        3.2.3 HSV Color Feature based Mean-shift Tracking第47-48页
        3.2.4 Occlusion Detection第48页
        3.2.5 Update Target Model第48-49页
        3.2.6 Color and Texture Features Fusion Based Particle-Kalman Filter Tracking第49-54页
    3.3 Visual Object Tracking System Implementation第54页
    3.4 Chapter Summary第54-55页
Chapter 4 - Experimental Results and Discussions第55-83页
    4.1 Chapter Introduction第55页
    4.2 Experimental Environment第55页
    4.3 Experimental Results第55-82页
        4.3.1 Qualitative Evaluation and Analysis第55-67页
        4.3.2 Quantitative Evaluation and Analysis第67-82页
    4.4 Chapter Summary第82-83页
Chapter 5 - Conclusion第83-85页
    5.1 Conclusion and Research Achievements第83-84页
    5.2 Research Prospects第84-85页
BIBLIOGRAPHY第85-90页
ACKNOWLEDGEMENT第90-91页
附件第91页

论文共91页,点击 下载论文
上一篇:面向外存模型的并行层次细节模型技术研究
下一篇:翻转课堂教学模式在初中音乐课堂中的实践研究