摘要 | 第1-10页 |
ABSTRACT | 第10-12页 |
第一章 绪论 | 第12-16页 |
·课题研究的背景 | 第12-13页 |
·国内外研究现状 | 第13-14页 |
·本文主要工作及论文组织 | 第14-16页 |
第二章 IDS概论 | 第16-32页 |
·入侵检测发展简史 | 第16-18页 |
·入侵检测的提出 | 第16-17页 |
·入侵检测的发展 | 第17-18页 |
·IDS分类 | 第18-22页 |
·基于数据源的分类 | 第18-20页 |
·基于检测方法的分类 | 第20-21页 |
·基于响应方法的分类 | 第21页 |
·基于体系结构的分类 | 第21-22页 |
·基于实时性要求的分类 | 第22页 |
·IDS模型 | 第22-24页 |
·Denning模型 | 第22-23页 |
·公共入侵检测模型CIDF | 第23-24页 |
·IDS数据源 | 第24-26页 |
·入侵检测常用方法 | 第26-29页 |
·传统检测方法的不足 | 第29-30页 |
·IDS发展趋势 | 第30-32页 |
第三章 D-S证据融合理论基础 | 第32-39页 |
·D-S证据理论概述 | 第32-35页 |
·D-S证据理论基础 | 第32-33页 |
·BPA确定的常用方法 | 第33-34页 |
·D-S证据理论的优缺点 | 第34-35页 |
·证据融合在入侵检测中的应用 | 第35-39页 |
·信息融合模型 | 第35页 |
·经典D-S证据融合推理 | 第35-36页 |
·经典D-S证据融合推理示例 | 第36-38页 |
·经典D-S证据融合推理的优缺点 | 第38-39页 |
第四章 基于EDS融合算法的NIDS模型 | 第39-51页 |
·扩展D-S证据融合理论 | 第39-41页 |
·扩展D-S证据融合算法 | 第39-40页 |
·扩展D-S证据融合示例及结果分析 | 第40-41页 |
·证据融合算法EDS | 第41-44页 |
·证据融合算法EDS及示例分析 | 第41-42页 |
·EDS算法复杂度分析 | 第42-44页 |
·EDS异常检测模型总体架构 | 第44-45页 |
·模型实现相关技术 | 第45-49页 |
·显著特征的筛选 | 第45-46页 |
·显著特征的粗集分类机制 | 第46页 |
·BPA的确定 | 第46-48页 |
·特征数据自适应机制 | 第48-49页 |
·模型的性能分析 | 第49-51页 |
第五章 模型实验及结果分析 | 第51-58页 |
·模型最小化实现 | 第51页 |
·模型实验引入的数据源 | 第51-52页 |
·基于UCI WBCD数据集的实验及结果分析 | 第52-54页 |
·数据分析及预处理 | 第52-53页 |
·实验结果分析 | 第53-54页 |
·基于KDD Cup 1999数据集的实验及结果分析 | 第54-58页 |
·数据分析及预处理 | 第54-56页 |
·实验结果分析 | 第56-58页 |
第六章 结论 | 第58-59页 |
参考文献 | 第59-62页 |
致谢 | 第62-63页 |
攻读学位期间发表的主要学术论文 | 第63-64页 |
攻读学位期间参与的项目 | 第64-65页 |
学位论文评阅及答辩情况表 | 第65页 |