首页--数理科学和化学论文--数学论文--几何、拓扑论文--拓扑(形势几何学)论文

模糊突变理论研究与应用

致谢第1-6页
摘要第6-7页
Abstract第7-10页
1 绪论第10-15页
   ·研究内容与意义第10-11页
   ·突变理论研究现状与应用中存在问题第11-13页
   ·本文工作第13页
   ·本文结构第13-15页
2 预备知识第15-28页
   ·突变理论第15-21页
     ·突变基本模型第15-20页
     ·结构稳定性第20-21页
   ·模糊集、模糊数及结构元第21-28页
     ·模糊集第21-23页
     ·模糊数第23页
     ·结构元第23-28页
3 模糊突变理论研究第28-41页
   ·突变理论与模糊数学的联系第28-31页
   ·基于模糊数学的折迭突变第31-39页
     ·势函数控制变量数的不确定性第31页
     ·势函数刻画的不确定性第31-38页
     ·外部控制准确度的不确定性第38-39页
   ·基于模糊数学的尖点突变第39-40页
   ·本章小结第40-41页
4 模糊数学与突变理论相结合的综合评价方法第41-55页
   ·突变级数评价法简介第41-43页
   ·模糊突变综合评价法第43-46页
   ·模糊数的运算第46-52页
     ·模糊数组的归一化第46-50页
     ·正模糊数的开方运算第50-52页
   ·模糊突变级数评价法步骤第52-54页
   ·本章小结第54-55页
5 应用实例第55-62页
6 结论第62-64页
参考文献第64-67页
附录A 附录内容名称第67-68页
作者简历第68-69页
学位论文数据集第69-70页

论文共70页,点击 下载论文
上一篇:模糊信息度量及其应用
下一篇:半定规划问题的若干算法研究