中文摘要 | 第1-6页 |
ABSTRACT | 第6-7页 |
第一章 绪论 | 第7-12页 |
·本课题选题的理由或意义 | 第7-8页 |
·国内外研究现状及趋势 | 第8-9页 |
·研究目标、研究内容和解决的关键问题 | 第9-10页 |
·研究目标 | 第9页 |
·研究内容 | 第9-10页 |
·解决的关键问题 | 第10页 |
·本文的创新之处和研究成果 | 第10页 |
·创新之处 | 第10页 |
·取得的研究成果 | 第10页 |
·本文的组织 | 第10-12页 |
第二章 关联分类算法发展概述 | 第12-21页 |
·关联分类算法的源泉:关联规则挖掘算法 | 第12-18页 |
·关联规则的相关定义和性质 | 第12-13页 |
·关联规则挖掘算法分类 | 第13-15页 |
·关联规则挖掘的经典算法——Apriori算法 | 第15-18页 |
·分类关联规则的定义与作用 | 第18-19页 |
·分类关联规则的提出 | 第18页 |
·分类关联规则相关定义 | 第18-19页 |
·关联分类算法的发展 | 第19-21页 |
第三章 Apriori_TFP_CMAR关联分类算法 | 第21-31页 |
·Apriori_TFP关联规则挖掘算法关键技术 | 第21-27页 |
·P树的作用及建构 | 第21-23页 |
·T树的作用及建构 | 第23-27页 |
·CMAR关联分类算法关键技术 | 第27-28页 |
·规则存储 | 第27-28页 |
·规则剪枝 | 第28页 |
·基于Apriori_TFP算法实现CMAR关联分类算法 | 第28-31页 |
·Apriori_TFP_CMAR算法思想 | 第29页 |
·实验及其结果分析 | 第29-31页 |
第四章 基于支持度与置信度阈值优化技术的关联分类算法 | 第31-35页 |
·支持度和置信度阈值设置对分类准确率的影响分析 | 第31-32页 |
·优化技术设计 | 第32-33页 |
·实验及其结果分析 | 第33-35页 |
第五章 关联分类规则提取系统的实现 | 第35-43页 |
·系统功能框架设计 | 第35-37页 |
·数据输入模块 | 第35-36页 |
·数据预处理模块 | 第36-37页 |
·规则提取模块 | 第37页 |
·显示模块 | 第37页 |
·系统逻辑单元设计 | 第37-39页 |
·系统交互设计 | 第39-40页 |
·实验结果 | 第40-43页 |
第六章 研究总结与展望 | 第43-45页 |
·本文研究总结 | 第43页 |
·下一步工作计划 | 第43-45页 |
附录 | 第45-48页 |
参考文献 | 第48-51页 |
致谢 | 第51页 |