摘要 | 第1-6页 |
Abstract | 第6-9页 |
第一章 绪论 | 第9-17页 |
·课题的背景和意义 | 第9页 |
·国内外研究动态 | 第9-10页 |
·智能控制技术的发展和应用 | 第10-16页 |
·模糊系统的发展和应用 | 第10-12页 |
·模糊系统和神经网络结合技术的发展和应用 | 第12-15页 |
·PID的发展和应用 | 第15-16页 |
·本文主要研究内容 | 第16-17页 |
第二章 PID控制和ANFIS基本理论 | 第17-30页 |
·PID控制基本原理 | 第17-19页 |
·PID控制 | 第17-18页 |
·PID算法 | 第18-19页 |
·ANFIS基本原理 | 第19-26页 |
·自适应网络结构 | 第19-20页 |
·自适应网络训练算法 | 第20-24页 |
·自适应模糊神经推理系统 | 第24-26页 |
·BP算法的改进方法 | 第26-30页 |
·动量附加法 | 第26页 |
·弹性BP法 | 第26-27页 |
·自适应学习率 | 第27页 |
·拟牛顿法 | 第27-28页 |
·Levenberg-Marquart法 | 第28页 |
·共轭梯度法 | 第28-30页 |
第三章 车辆自动驾驶横向控制方法研究 | 第30-49页 |
·基于ANFIS的控制模型 | 第30-36页 |
·ANFIS的控制模型结构 | 第30-32页 |
·ANFIS的控制模型训练算法 | 第32-36页 |
·基于神经网络的自适应PID控制模型 | 第36-46页 |
·神经网络理论 | 第36-37页 |
·单神经元自适应PID控制模型 | 第37-39页 |
·BP神经网络PID自适应控制模型 | 第39-43页 |
·小脑神经网络(CMAC)控制模型 | 第43-45页 |
·基于CMAC的BP神经网络自适应控制模型 | 第45-46页 |
·复合模糊神经网络PID控制模型 | 第46-49页 |
·复合控制模型描述 | 第46-47页 |
·复合控制模型设计 | 第47-49页 |
第四章 车辆横向控制的仿真计算 | 第49-60页 |
·汽车动力学系统的仿真模型 | 第49-53页 |
·七自由度汽车动力学模型 | 第49-52页 |
·十七自由度汽车动力学模型 | 第52-53页 |
·基于MATLAB的仿真环境 | 第53-55页 |
·MATLAB简介 | 第53页 |
·MATLAB语言特点及工作环境 | 第53-54页 |
·MATLAB环境下运用SIMULINK建立汽车模型 | 第54-55页 |
·单神经元PID控制模型的仿真 | 第55-56页 |
·单神经元PID控制模型仿真计算 | 第55-56页 |
·仿真结果分析 | 第56页 |
·单独ANFIS控制模型的仿真 | 第56-58页 |
·ANFIS模型仿真计算 | 第56-58页 |
·仿真结果分析 | 第58页 |
·复合模糊神经网络PID控制模型的仿真 | 第58-59页 |
·复合控制模型仿真计算 | 第58-59页 |
·仿真结果分析 | 第59页 |
·仿真结果小结 | 第59-60页 |
第五章 结论 | 第60-61页 |
参考文献 | 第61-63页 |
在学研究成果 | 第63-64页 |
致谢 | 第64页 |