首页--航空、航天论文--航天(宇宙航行)论文--推进系统(发动机、推进器)论文--固体推进剂火箭发动机论文

Study and Design of A Solid Rocket Motors Igniter

摘要第4-5页
Abstract第5-6页
1 Introduction第11-23页
    1.1 The Concept of the Dual Pulse Solid Rocket Motors第11-12页
    1.2 The Study of the Dual Pulse Solid Rocket Motor第12-15页
        1.2.1 Literature Review第13-14页
        1.2.2 Problem Statement第14-15页
    1.3 The Ignition Transient in Dual Pulse Solid Rocket Motor第15-21页
        1.3.1 The Ignition Transient Process第16-17页
        1.3.2 The Importance of The Ignition Transient Problem第17页
        1.3.3 The Ignition Transient Literature Review第17-21页
    1.4 Thesis Organization第21-23页
2 The Igniter Design第23-33页
    2.1 The Ignition System第24-26页
        2.1.1 The Igniter Types第24-26页
    2.2 The Pyrotechnic Igniter design第26页
        2.2.1 Pyrotechnic Characteristics第26页
    2.3 The Igniter Design Criteria第26-28页
        2.3.1 Performances第27页
        2.3.2 The Specific Reliability第27页
        2.3.3 The Most Suitable Fee第27-28页
    2.4 The Pellet Types Equations第28-30页
        2.4.1 For Cylindrical Form第28-29页
        2.4.2 For The Overall Pellets第29页
        2.4.3 For The Rectangular Shape第29-30页
    2.5 The structure of igniter for dual pulse solid rocket motor第30-32页
    2.6 Summary第32-33页
3 The Mathematical and Physical Models第33-46页
    3.1 Dual Pulse Solid Rocket Motors Ignition Transient Process第33-35页
        3.1.1 Physical Models第33-34页
        3.1.2 Basic Assumptions of The Dual Pulse Solid Rocket Motors Ignition Process第34-35页
    3.2 Double Pulse Engine Ignition Transient Mathematical Models第35-42页
        3.2.1 Basic Control Equations第35-36页
        3.2.2 Igniter Mass Flow Rate Model第36-37页
        3.2.3 Energy Transfer Model And Heat Transfer Model of Propellant第37-39页
        3.2.4 Propellant Burning Rate Model第39-41页
        3.2.5 Turbulence Model第41-42页
    3.3 Numerical Solution Method第42-44页
        3.3.1 The Finite Volume Method第42-43页
        3.3.2 The Ansys Fluent第43页
        3.3.3 Density-Based Solver第43页
        3.3.4 Advection Upstream Splitting Method (AUSM)第43-44页
        3.3.5 Monotone Upstream-Centred Scheme For Conservation Laws Scheme第44页
        3.3.6 Lower-Upper Symmetric Gaussseidel (LU-SGS)第44页
    3.4 Summary第44-46页
4 The Computational Model and Results Discussions第46-67页
    4.1 Physical Model and Meshing第47-49页
        4.1.1 Physical Model第47页
        4.1.2 The Meshing第47-49页
    4.2 The Boundary and Initial Conditions第49-51页
    4.3 Numerical simulation results and analysis第51-65页
        4.3.1 The Flow-Field and Flame Propagation in Combustion Chambers第51-54页
        4.3.2 The Pressure Evolution During The Second Pulse Ignition Transient第54-56页
        4.3.3 The Mach Number Contours and Streamline Distribution第56-57页
        4.3.4 Pressure Histories of Investigative Points in Combustion Chamber During TheIgnition Transient第57-59页
        4.3.5 The Effects of The Igniter's Mass Flow Rate第59-65页
    4.4 Summary第65-67页
5 General Conclusion第67-70页
    5.1 Further Studies第68-70页
Acknowledgements第70-71页
REFERENCES第71-74页

论文共74页,点击 下载论文
上一篇:不同烘焙程度生物质热解/气化反应性及其构效关系研究
下一篇:城市工业遗产的空间景观设计研究--以苏州钢铁集团老厂区为例