首页--工业技术论文--自动化技术、计算机技术论文--计算技术、计算机技术论文--计算机软件论文--程序设计、软件工程论文--程序设计论文

基于邻近重采样和分类器排序的信用卡欺诈检测中不平衡数据研究

摘要第5-7页
abstract第7-8页
Chapter 1 Introduction第12-27页
    1.1 Introduction第12-18页
        1.1.1 Credit Card Fraud第12-15页
        1.1.2 Types of Credit Card Fraud第15-18页
            1.1.2.1 Bankruptcy Fraud第16页
            1.1.2.2 Theft fraud/counterfeit Fraud第16页
            1.1.2.3 Application Fraud第16-17页
            1.1.2.4 Behavioral Fraud第17-18页
        1.1.3 Losses Generated by Credit Card Fraud第18页
    1.2 Fraud Analytics and Predictive Analytics第18-19页
    1.3 Predictive Analytics for Credit Card Fraud第19-20页
    1.4 Pre-processing Techniques for Class Imbalance第20-21页
    1.5 Research Motivation and Problem Statement第21-23页
    1.6 Contribution第23-24页
    1.7 Software Implementation for Experimentation第24页
    1.8 Layout of Thesis第24-27页
Chapter 2 Literature Review第27-64页
    2.1 Machine Learning第27-44页
        2.1.1 Unsupervised Learning第28页
        2.1.2 Supervised Learning第28-29页
            2.1.2.1 Supervised Learning for Credit Card Fraud Detection第28-29页
        2.1.3 Classification Techniques for Credit Card Fraud第29-44页
            2.1.3.1 Decision Tree第30-36页
            2.1.3.2 Support Vector Machine (SVM)第36-38页
            2.1.3.3 IBK第38-40页
            2.1.3.4 Voted Perceptron第40页
            2.1.3.5 Linear Logistic第40-41页
            2.1.3.6 Na?ve Bayes第41-42页
            2.1.3.7 Bayesian Network第42-44页
    2.2 Single & Multi-algorithm Classification Techniques used for CCFD第44-47页
    2.3 General Framework of Credit Card Fraud Detection第47-48页
    2.4 Techniques for Handling Class Imbalanced Datasets第48-58页
        2.4.1 Algorithm Level Techniques第48-50页
        2.4.2 Data Level Techniques第50-58页
            2.4.2.1 Under-sampling Techniques第51-53页
            2.4.2.2 Over-sampling Techniques第53-54页
            2.4.2.3 Ensemble Techniques第54-57页
            2.4.2.4 Cost Based Techniques第57-58页
    2.5 Related Work第58-64页
        2.5.1 Literature Survey for Resampling Techniques and Limitations第58-61页
        2.5.2 Literature Survey for Ranking Classification Algorithms using MCDM第61-64页
Chapter 3 A Novel Resampling Approach for Credit Card Fraud第64-87页
    3.1 Motivation for the Novel Resampling Approach第64-65页
    3.2 Locally Centered Mahalanobis Distance第65-67页
    3.3 Algorithm for Noisy and Borderline Samples第67-68页
        3.3.1 Algorithm for Noisy and Borderline samples第67-68页
    3.4 Novel Resampling Approach第68-73页
        3.4.1 Novel Under-sampling Approach第68-70页
        3.4.2 Over-sampling Approach第70-73页
            3.4.2.1 Over-sampling Algorithm第71-73页
    3.5 Experimentation第73-82页
        3.5.1 Credit Card Data Sets第73-75页
            3.5.1.1 Australian Credit Approval (ACA)第74页
            3.5.1.2 German Credit Data (GCD)第74-75页
            3.5.1.3 Give Me Some Credit (GMSC)第75页
            3.5.1.4 PAKDD 2010第75页
            3.5.1.5 Indonesian Credit Card Dataset (ICCD)第75页
        3.5.2 Dataset Preparation for Supervised Classification第75-77页
            3.5.2.1 Training and Cross-validation Sets第76-77页
            3.5.2.2 Testing Set第77页
        3.5.3 Evaluation Criteria for Credit Card Datasets第77-80页
            3.5.3.1 Performance Measures第78-80页
        3.5.4 Experimental Procedure第80-82页
    3.6 Results and Discussion第82-87页
        3.6.1 Under-sampling Results第84-85页
        3.6.2 Over-sampling Results第85-87页
Chapter 4 Impact of Class Imbalance in Ranking Classifiers第87-115页
    4.1 A Comparative Study of Decision Tree Algorithms for Credit Card Fraud第89-95页
        4.1.1 Experimental Design第89-90页
        4.1.2 Resampling the Datasets第90页
        4.1.3 Feature selection and Classification第90页
        4.1.4 Parameter Tuning of Classifiers第90-91页
        4.1.5 Results & Discussion第91-95页
    4.2 Ranking Classifiers Using MCDM for Imbalanced CCFD第95-107页
        4.2.1 Proposed Scheme第98-99页
            4.2.1.1 Pre-Processing Phase第98页
            4.2.1.2 Data Mining Phase第98页
            4.2.1.3 Ranking Phase第98-99页
        4.2.2 Experimental Design第99-101页
        4.2.3 Results and Discussion第101-107页
            4.2.3.1 MCDM Phase第103-107页
    4.3 Comparison of Different Ranking Approaches for Classifiers第107-115页
Chapter 5 Conclusion第115-119页
    5.1 Contributions and Conclusions第115-117页
    5.2 Future Work第117-119页
Acknowledgement第119-120页
References第120-136页
Research Results Obtained During the Study for Doctoral Degree第136-137页

论文共137页,点击 下载论文
上一篇:协同发展背景下京津冀财政支出结构优化分析
下一篇:金融风险传染的DAI空间计量模型及实证研究