摘要 | 第5-7页 |
Abstract | 第7-8页 |
Chapter 1 Introduction | 第23-39页 |
1.1 Methods for information initialization of robot | 第23-24页 |
1.2 Robot kinematics, models and methods | 第24-35页 |
1.2.1 Robot kinematics | 第24-25页 |
1.2.2 Modelling phase | 第25-29页 |
1.2.3 Model survey phase | 第29-31页 |
1.2.4 An overview of methods for solving kinematic problems of parallel robot | 第31-35页 |
1.3 Research orientation | 第35-36页 |
1.4 Subjects and research methods | 第36页 |
1.5 Contents of the present thesis | 第36-39页 |
Chapter 2 Mathematical Bases for Changing from the Robot Kinematic Problem to theOptimization Problem | 第39-65页 |
2.1 Introduction | 第39页 |
2.2 Robot kinematic under the optimization form | 第39-52页 |
2.2.1 The optimal mathematical model of robotic kinematic | 第39-41页 |
2.2.2 Bases for optimization problems on the robot arm | 第41-45页 |
2.2.3 The optimal movement problem | 第45页 |
2.2.4 Algorithm diagram | 第45-47页 |
2.2.5 The uniform precision structure | 第47-49页 |
2.2.6 The effect of the difference calculation on the accuracy of the problem | 第49-52页 |
2.3 Types of associated vector equations for parallel robots | 第52-64页 |
2.3.1 Difference in the way to build the associated vector equations for robot arms andparallel robots | 第52-53页 |
2.3.2 The non-prismatic parallel robot (Type 1) | 第53-58页 |
2.3.3 The prismatic parallel robots | 第58-63页 |
2.3.4 Identify similarities in the mathematical model of parallel robots and robot arms | 第63-64页 |
2.4 Chapter conclusion | 第64-65页 |
Chapter 3 Application of Generalized Reduced Gradient Algorithm to Solve theKinematic Problem of Parallel Robots | 第65-140页 |
3.1 Introduction | 第65页 |
3.2 Generalized Reduced Gradient algorithm | 第65-69页 |
3.3 Introduction of optimization application of solver in Microsoft-Excel | 第69-72页 |
3.4 Resolution of the Kinematic Problems of Parallel Robots using Generalized ReducedGradient algorithm | 第72-139页 |
3.4.1 Parallel robot of type 1 | 第72-81页 |
3.4.2 Equivalent substitution configuration and the formulation of variables change | 第81-85页 |
3.4.3 Parallel robot of type 2 | 第85-107页 |
3.4.4 Parallel robot of type 3 | 第107-126页 |
3.4.5 The assurance of unique solution between two different spaces | 第126-127页 |
3.4.6 Testing the reliability of the novel method | 第127-130页 |
3.4.7 Testing the precision of the novel method and compare accuracy with other methods | 第130-139页 |
3.5 Chapter’s conclusion | 第139-140页 |
Chapter 4 Simulation and Experimental Study | 第140-200页 |
4.1 Introduction | 第140页 |
4.2 Content of experiment | 第140页 |
4.3 Based on experimental design | 第140-167页 |
4.3.1 Parallel Scara robot | 第140-149页 |
4.3.2 Settings of kinematic characteristics of joints for Parallel Scara robot | 第149-167页 |
4.4 Testing simulation and accuracy of numerical results | 第167-175页 |
4.4.1 Inspection of results by graphics | 第168-171页 |
4.4.2 Inspection of results by simulation software | 第171-175页 |
4.5 Experimental study | 第175-198页 |
4.5.1 Experimental setup | 第175-177页 |
4.5.2 Basic parameters of mechanical-electrical-electronic components | 第177-182页 |
4.5.3 Design of control system software | 第182-190页 |
4.5.4 Results of experiments and discussion | 第190-198页 |
4.6 Chapter conclusions | 第198-200页 |
Chapter 5 Application Generalized Reduced Gradient Algorithm to DetermineTolerance Design of Robot Parameters | 第200-217页 |
5.1 Introduction | 第200页 |
5.2 Literature review of tolerance design | 第200-204页 |
5.3 The formation of the optimal problem | 第204-205页 |
5.4 Solution method for the optimization problem | 第205页 |
5.5 Determination of the tolerance of joint angle movement | 第205-208页 |
5.6 Determination of the deviation of link dimensions and joint free radial movement byusing inverse kinematic | 第208-210页 |
5.7 The example of numerical simulation | 第210-215页 |
5.7.1 Robot arm | 第210-212页 |
5.7.2 Parallel Robot | 第212-215页 |
5.8 Checking the accuracy of the proposed method | 第215-216页 |
5.9 Chapter conclusion | 第216-217页 |
Chapter 6 Conclusions and Future Works | 第217-221页 |
6.1 Conclusions | 第217-219页 |
6.2 The main points of innovation | 第219页 |
6.3 Future works | 第219-221页 |
References | 第221-233页 |
AppendixⅠ | 第233-246页 |
Achievement of research | 第246-247页 |
Acknowledgements | 第247-248页 |
附件 | 第248页 |