摘要 | 第5-6页 |
Abstract | 第6页 |
第1章 引言 | 第9-15页 |
1.1 选题背景及其意义 | 第9-10页 |
1.2 国内外研究现状及分析 | 第10-12页 |
1.3 本文所做的工作 | 第12-15页 |
第2章 L-PLC 信道的混沌及多重分形特性 | 第15-28页 |
2.1 混沌理论基础 | 第15-18页 |
2.1.1 混沌的定义 | 第15-16页 |
2.1.2 混沌的基本特征 | 第16-17页 |
2.1.3 Takens 相空间重构理论 | 第17-18页 |
2.1.4 混沌时间序列的特征量——最大 Lyapunov 指数 | 第18页 |
2.2 L-PLC 信道的混沌特性 | 第18-21页 |
2.3 多重分形理论 | 第21-24页 |
2.3.1 多重分形维数 | 第22-24页 |
2.3.2 多重分形谱 | 第24页 |
2.4 L-PLC 信道的多重分形特性 | 第24-27页 |
2.5 本章小结 | 第27-28页 |
第3章 基于改进 GP 算法的 L-PLC 信道混沌建模 | 第28-41页 |
3.1 混沌系统建模方法 | 第28-35页 |
3.1.1 遗传编程算法 | 第29-33页 |
3.1.2 改进遗传编程算法 | 第33-35页 |
3.2 L-PLC 信道的混沌建模 | 第35-39页 |
3.2.1 混沌建模流程 | 第35-36页 |
3.2.2 建模结果及分析 | 第36-39页 |
3.3 本章小结 | 第39-41页 |
第4章 基于多重分形的 L-PLC 信道建模 | 第41-48页 |
4.1 HURST 指数 | 第41-42页 |
4.2 分形布朗运动 | 第42-43页 |
4.3 L-PLC 信道的多重分形模型 | 第43-47页 |
4.3.1 随机中点偏移算法 | 第43-44页 |
4.3.2 建模结果及分析 | 第44-47页 |
4.4 本章小结 | 第47-48页 |
第5章 总结与展望 | 第48-50页 |
5.1 论文主要研究工作 | 第48-49页 |
5.2 后继工作展望 | 第49-50页 |
参考文献 | 第50-53页 |
致谢 | 第53-54页 |
攻读硕士学位期间发表论文情况 | 第54页 |