首页--航空、航天论文--航天用燃料(推进剂)及润滑剂论文

Energetic Interpenetrating Polymer Network(EIPN):Enhanced Thermo-Mechanical Properties of GAP and HTPB based Binders and its Propellants for Advanced Missile Technology

Abstract第7-9页
Chapter 1 Introduction and Literature Review第19-36页
    1.1 Introduction第19-20页
    1.2 Types of IPNs Based on Synthesis Mode第20-21页
        1.2.1 Sequential IPNs第20页
        1.2.2 Simultaneous IPNs第20页
        1.2.3 Latex-IPNs第20页
        1.2.4 Thermoplastic IPNs第20页
        1.2.5 Gradient IPNs第20页
        1.2.6 Semi-IPNs (SIPNs) or pseudo IPNs第20-21页
    1.3 Types of IPNs Based on Chemical Bonding第21页
        1.3.1 Covalent Semi IPN第21页
        1.3.2 Non Covalent Semi IPN第21页
        1.3.3 Non Covalent Full IPN第21页
    1.4 Classification Based on Structure of Polymers第21-23页
    1.5 History of IPNs第23-27页
    1.6 Hydroxyl Terminated Polybutadiene第27-28页
    1.7 Glycidyl Azide Polymers第28-33页
    1.8 Aims and Objective of the Thesis第33-34页
    1.9 Layout of the Thesis第34-36页
Chapter 2 In-Situ FTIR Kinetic Studies of GAP/HTPB and Characterization Techniques第36-43页
    2.1 Introduction第36页
    2.2 Experimental Section第36-37页
        2.2.1 Materials Characteristics第36-37页
        2.2.2 Infrared measurements第37页
    2.3 Results and Discussion第37-40页
    2.4 Experimental Methods and Characterization Techniques第40-43页
Chapter 3 Energetic Interpenetrating Polymer Network Based on Orthogonal Azido-Alkyne Click and Polyurethane for Potential Solid Propellant第43-59页
    3.1 Introduction第43页
    3.2 Experimental Section第43-48页
        3.2.1 Materials Characteristics第43-44页
        3.2.2 Synthesis of Acyl-Terminated GAP第44-45页
        3.2.3 Synthesis of Dimethyl 2, 2-di (prop2ynyl) malonate (DDPM)第45页
        3.2.4 Preparation of single networks第45-47页
        3.2.5 Synthesis of energetic interpenetrating polymer network (EIPNs)第47-48页
    3.3 Results and Discussion第48-59页
        3.3.1 In situ FT-IR kinetic studies of Acyl-GAP/DDPM and HTPB/IPDI-N100第48-50页
        3.3.2 Cross-linking Densities and Swelling Behaviors of the Acyl-GAP/DDPM Materials第50-51页
        3.3.3 Mechanical Properties第51-53页
        3.3.4 Thermal Studies第53-55页
        3.3.5 TGA/DTG Analysis第55-57页
        3.3.6 TG-FTIR Spectroscopic Studies第57-58页
        3.3.7 Morphological Studies第58-59页
Chapter 4 Energetic Hybrid Polymer Network (EHPN) through Facile Sequential Polyurethane Curation Based on the Reactivity Differences between Glycidyl Azide Polymer and Hydroxyl Terminated Polybutadiene第59-71页
    4.1 Introduction第59页
    4.2 Experimental Section第59-61页
        4.2.1 Materials Chaaracteristics第59-60页
        4.2.2 Preparation of Single Networks第60页
        4.2.3 Synthesis of Energetic Hybrid Polymer Network (EHPNs)第60-61页
    4.3 Results and Discussion第61-71页
        4.3.1 In-situ FTIR Kinetic Studies of GAP/IPDI-N100 and HTPB/IPDI-N100第61-63页
        4.3.2 Mechanical Properties第63-66页
        4.3.3 Thermal Studies第66-69页
        4.3.4 Morphological studies第69-71页
Chapter 5 A Study on the Triazole, Isocyante and Dual Curing Systems of Glycidyl Azide Polymer: Mechanical, Thermal and Morphological Properties第71-81页
    5.1 Introduction第71页
    5.2 Experimental Section第71-74页
        5.2.1 Materials Characteristics第71-72页
        5.2.2 Synthesis of Bis-Propargyl Adipate (BPA)第72页
        5.2.3 Curing of GAP diol with Isocyanate (IPDI/N100) Curing Systems第72-73页
        5.2.4 Isocyanate-Free Curing of GAP diol with Bis-propargyl Adipate (BPA)第73页
        5.2.5 Dual Curing of GAP Diol with BPA and IPDI/N100第73-74页
    5.3 Results and Discussion第74-81页
        5.3.1 Cross-linking Densities and Swelling Behavior of the GAP-BPA Materials第74-75页
        5.3.2 Mechanical Studies第75-78页
            5.3.2.1 Curing of GAP Diol with Isocyanate Curing Systems第75-76页
            5.3.2.2 Isocyanate-Free Curing of GAP Diol with Bis propargyl adipate (BPA)第76-77页
            5.3.2.3 Dual Curing of GAP Diol with BPA and IPDI/N100第77-78页
        5.3.3 Thermal Decomposition Studies第78-80页
        5.3.4 Morphological studies第80-81页
Chapter 6 Energetic Interpenetrating Polymer Network (EIPN): Enhanced Thermo-Mechanical Properties of NCO-f MWCNTs/HTPB PU and Alkyne-f MWCNTs/Acyl-GAP based Nanocomposite and its Propellants第81-101页
    6.1 Introduction第81-82页
    6.2 Experimental Section第82-86页
        6.2.1 Materials Characteristics第82-83页
        6.2.2 Functionalization of MWCNTs第83-84页
        6.2.3 Preparation of NCO-f MWCNTs/HTPB PU and Alkyne-f MWCNTs/Acyl-GAP Click Nanocomposite第84-85页
        6.2.4 Synthesis of Energetic Interpenetrating Polymer Network (EIPNs)第85页
        6.2.5 Preparation of composite solid propellants第85-86页
    6.3 Results and discussion第86-101页
        6.3.1 FTIR Characterizations of Functionalized MWCNTs第86-88页
        6.3.2 Ramen Spectroscopic Analysis第88-89页
        6.3.3 Thermogravimetric Analysis第89-90页
        6.3.4 XPX Analysis第90-92页
        6.3.5 TEM Analysis第92-93页
        6.3.6 Mechanical Properties of NCO-f MWCNTs/ HTPB PU and Alkyne-f MWCNTs/Acyl-GAP Click Nanocomposite第93-95页
        6.3.7 Mechanical Properties of NCO-f MWCNTs/ HTPB PU and Alkyne-f MWCNTs/Acyl-GAP Click Based EIPN Nanocomposite.第95-96页
        6.3.8 DISPERSION TEST第96-97页
        6.3.9 DSC Analysis第97-98页
        6.3.10 Impact and Friction Sensitivity of the Binder Systems and Propellants第98页
        6.3.11 TGA/DTG Analysis第98-101页
Chapter 7 Conclusions and Future Perspectives第101-104页
    7.1 Outlook第101页
    7.2 Conclusions第101-104页
Acknowledgement第104-106页
List of Published & Submitted Papers第106-107页
References第107-115页

论文共115页,点击 下载论文
上一篇:基于超表面的光学几何相操控原理及器件研究
下一篇:基于多主体的城市轨道交通车站应急疏散引导研究