Abstract | 第7-9页 |
Chapter 1 Introduction and Literature Review | 第19-36页 |
1.1 Introduction | 第19-20页 |
1.2 Types of IPNs Based on Synthesis Mode | 第20-21页 |
1.2.1 Sequential IPNs | 第20页 |
1.2.2 Simultaneous IPNs | 第20页 |
1.2.3 Latex-IPNs | 第20页 |
1.2.4 Thermoplastic IPNs | 第20页 |
1.2.5 Gradient IPNs | 第20页 |
1.2.6 Semi-IPNs (SIPNs) or pseudo IPNs | 第20-21页 |
1.3 Types of IPNs Based on Chemical Bonding | 第21页 |
1.3.1 Covalent Semi IPN | 第21页 |
1.3.2 Non Covalent Semi IPN | 第21页 |
1.3.3 Non Covalent Full IPN | 第21页 |
1.4 Classification Based on Structure of Polymers | 第21-23页 |
1.5 History of IPNs | 第23-27页 |
1.6 Hydroxyl Terminated Polybutadiene | 第27-28页 |
1.7 Glycidyl Azide Polymers | 第28-33页 |
1.8 Aims and Objective of the Thesis | 第33-34页 |
1.9 Layout of the Thesis | 第34-36页 |
Chapter 2 In-Situ FTIR Kinetic Studies of GAP/HTPB and Characterization Techniques | 第36-43页 |
2.1 Introduction | 第36页 |
2.2 Experimental Section | 第36-37页 |
2.2.1 Materials Characteristics | 第36-37页 |
2.2.2 Infrared measurements | 第37页 |
2.3 Results and Discussion | 第37-40页 |
2.4 Experimental Methods and Characterization Techniques | 第40-43页 |
Chapter 3 Energetic Interpenetrating Polymer Network Based on Orthogonal Azido-Alkyne Click and Polyurethane for Potential Solid Propellant | 第43-59页 |
3.1 Introduction | 第43页 |
3.2 Experimental Section | 第43-48页 |
3.2.1 Materials Characteristics | 第43-44页 |
3.2.2 Synthesis of Acyl-Terminated GAP | 第44-45页 |
3.2.3 Synthesis of Dimethyl 2, 2-di (prop2ynyl) malonate (DDPM) | 第45页 |
3.2.4 Preparation of single networks | 第45-47页 |
3.2.5 Synthesis of energetic interpenetrating polymer network (EIPNs) | 第47-48页 |
3.3 Results and Discussion | 第48-59页 |
3.3.1 In situ FT-IR kinetic studies of Acyl-GAP/DDPM and HTPB/IPDI-N100 | 第48-50页 |
3.3.2 Cross-linking Densities and Swelling Behaviors of the Acyl-GAP/DDPM Materials | 第50-51页 |
3.3.3 Mechanical Properties | 第51-53页 |
3.3.4 Thermal Studies | 第53-55页 |
3.3.5 TGA/DTG Analysis | 第55-57页 |
3.3.6 TG-FTIR Spectroscopic Studies | 第57-58页 |
3.3.7 Morphological Studies | 第58-59页 |
Chapter 4 Energetic Hybrid Polymer Network (EHPN) through Facile Sequential Polyurethane Curation Based on the Reactivity Differences between Glycidyl Azide Polymer and Hydroxyl Terminated Polybutadiene | 第59-71页 |
4.1 Introduction | 第59页 |
4.2 Experimental Section | 第59-61页 |
4.2.1 Materials Chaaracteristics | 第59-60页 |
4.2.2 Preparation of Single Networks | 第60页 |
4.2.3 Synthesis of Energetic Hybrid Polymer Network (EHPNs) | 第60-61页 |
4.3 Results and Discussion | 第61-71页 |
4.3.1 In-situ FTIR Kinetic Studies of GAP/IPDI-N100 and HTPB/IPDI-N100 | 第61-63页 |
4.3.2 Mechanical Properties | 第63-66页 |
4.3.3 Thermal Studies | 第66-69页 |
4.3.4 Morphological studies | 第69-71页 |
Chapter 5 A Study on the Triazole, Isocyante and Dual Curing Systems of Glycidyl Azide Polymer: Mechanical, Thermal and Morphological Properties | 第71-81页 |
5.1 Introduction | 第71页 |
5.2 Experimental Section | 第71-74页 |
5.2.1 Materials Characteristics | 第71-72页 |
5.2.2 Synthesis of Bis-Propargyl Adipate (BPA) | 第72页 |
5.2.3 Curing of GAP diol with Isocyanate (IPDI/N100) Curing Systems | 第72-73页 |
5.2.4 Isocyanate-Free Curing of GAP diol with Bis-propargyl Adipate (BPA) | 第73页 |
5.2.5 Dual Curing of GAP Diol with BPA and IPDI/N100 | 第73-74页 |
5.3 Results and Discussion | 第74-81页 |
5.3.1 Cross-linking Densities and Swelling Behavior of the GAP-BPA Materials | 第74-75页 |
5.3.2 Mechanical Studies | 第75-78页 |
5.3.2.1 Curing of GAP Diol with Isocyanate Curing Systems | 第75-76页 |
5.3.2.2 Isocyanate-Free Curing of GAP Diol with Bis propargyl adipate (BPA) | 第76-77页 |
5.3.2.3 Dual Curing of GAP Diol with BPA and IPDI/N100 | 第77-78页 |
5.3.3 Thermal Decomposition Studies | 第78-80页 |
5.3.4 Morphological studies | 第80-81页 |
Chapter 6 Energetic Interpenetrating Polymer Network (EIPN): Enhanced Thermo-Mechanical Properties of NCO-f MWCNTs/HTPB PU and Alkyne-f MWCNTs/Acyl-GAP based Nanocomposite and its Propellants | 第81-101页 |
6.1 Introduction | 第81-82页 |
6.2 Experimental Section | 第82-86页 |
6.2.1 Materials Characteristics | 第82-83页 |
6.2.2 Functionalization of MWCNTs | 第83-84页 |
6.2.3 Preparation of NCO-f MWCNTs/HTPB PU and Alkyne-f MWCNTs/Acyl-GAP Click Nanocomposite | 第84-85页 |
6.2.4 Synthesis of Energetic Interpenetrating Polymer Network (EIPNs) | 第85页 |
6.2.5 Preparation of composite solid propellants | 第85-86页 |
6.3 Results and discussion | 第86-101页 |
6.3.1 FTIR Characterizations of Functionalized MWCNTs | 第86-88页 |
6.3.2 Ramen Spectroscopic Analysis | 第88-89页 |
6.3.3 Thermogravimetric Analysis | 第89-90页 |
6.3.4 XPX Analysis | 第90-92页 |
6.3.5 TEM Analysis | 第92-93页 |
6.3.6 Mechanical Properties of NCO-f MWCNTs/ HTPB PU and Alkyne-f MWCNTs/Acyl-GAP Click Nanocomposite | 第93-95页 |
6.3.7 Mechanical Properties of NCO-f MWCNTs/ HTPB PU and Alkyne-f MWCNTs/Acyl-GAP Click Based EIPN Nanocomposite. | 第95-96页 |
6.3.8 DISPERSION TEST | 第96-97页 |
6.3.9 DSC Analysis | 第97-98页 |
6.3.10 Impact and Friction Sensitivity of the Binder Systems and Propellants | 第98页 |
6.3.11 TGA/DTG Analysis | 第98-101页 |
Chapter 7 Conclusions and Future Perspectives | 第101-104页 |
7.1 Outlook | 第101页 |
7.2 Conclusions | 第101-104页 |
Acknowledgement | 第104-106页 |
List of Published & Submitted Papers | 第106-107页 |
References | 第107-115页 |