首页--工业技术论文--无线电电子学、电信技术论文--基本电子电路论文--滤波技术、滤波器论文

基于互补滤波器和惯性SLAM算法的ROV姿态估计

Abstract第4-5页
摘要第6-14页
List of Abbreviations第14-15页
Chapter 1 Introduction第15-36页
    1.1 Background and significance of the research第15-17页
    1.2 Current research on SONAR s ystem in China and Abroad第17-20页
        1.2.1 SONAR types and basic working principles第17-18页
        1.2.2 SONAR applications第18-19页
        1.2.3 Active towed array sonar第19-20页
    1.3 Remotely operated vehicle (ROV)第20-22页
        1.3.1 Historical development of ROV第20页
        1.3.2 Classification of ROV第20-22页
    1.4 Towed array第22-27页
    1.5 MEMS inertial sensing第27-31页
        1.5.1 ROV attitude estimation第28-30页
        1.5.2 Towed array orientation/shape estimation第30-31页
    1.6 Statement of the problem第31-33页
    1.7 Aim and objectives of the study第33-34页
    1.8 Main structure of the dissertation第34-36页
Chapter 2 Sensor fusion algorithms and quaternions第36-51页
    2.1 Introduction第36页
    2.2 Complementary filters第36-40页
        2.2.1 Fixed gain complementary filter第37-38页
        2.2.2 Gradient descent based complementary filter第38-39页
        2.2.3 Variable gain complementary filter第39-40页
    2.3 Kalman filter第40-43页
        2.3.1 Discrete kalman filter第41-43页
        2.3.2 Extended kalman filter第43页
    2.4 Quaternions第43-51页
        2.4.1 Euler angle to quaternion第46-47页
        2.4.2 Quaternion-based kalman filter第47-51页
Chapter 3 Sensor fusion based on complementary and attitude estimationalgorithms using MEMS IMU第51-69页
    3.1 Introduction第51-52页
    3.2 MEMS IMU gyroscope model第52-54页
    3.3 MEMS IMU accelerometer model第54-55页
    3.4 Attitude estimation algorithms第55-60页
        3.4.1 Extended kalman filter第56-58页
        3.4.2 Fixed gain complementary filter第58-59页
        3.4.3 Gradient descent complementary filter第59-60页
    3.5 Results and discussion第60-68页
        3.5.1 Simulation results第60-63页
        3.5.2 Experimental results第63-68页
    3.6 Chapter summary第68-69页
Chapter 4 Performance enhancement for complementary filter throughfilter gain第69-85页
    4.1 Introduction第69-70页
    4.2 Complementary filter and MEMS IMU modeling第70-75页
        4.2.1 Extended kalman filter第70页
        4.2.2 Complementary filter第70-72页
        4.2.3 Attitude estimation from gyro第72-74页
        4.2.4 Attitude estimation from accelerometer第74-75页
    4.3 Attitude estimating algorithms第75-79页
        4.3.1 Fixed gain complementary filters第76-77页
        4.3.2 Variable gain complementaryfilter第77-79页
        4.3.3 Extended kalman filter for attidude estimating第79页
    4.4 Results and discussion第79-83页
        4.4.1 Simulation results第79-81页
        4.4.2 Experimental results第81-83页
    4.5 Chapter summary第83-85页
Chapter 5 Attitude estimation from MEMS IMU using fuzzy tunedcomplementary filter第85-95页
    5.1 Introduction第85-86页
    5.2 Theoretical background第86-87页
        5.2.1 Reference system第86-87页
        5.2.2 Calibration第87页
    5.3 The proposed algorithm第87-91页
        5.3.1 Gradient descent based complementary filter第87-88页
        5.3.2 Fuzzy tuned complementary filter第88-91页
    5.4 Simulation results第91-93页
    5.5 Chapter summary第93-95页
Chapter 6 Navigation technologies for autonomous underwater vehiclesbased on inertial measurement units and sonar第95-109页
    6.1 Introduction第95-97页
    6.2 Navigational methods第97-101页
        6.2.1 Inertial navigation第97-98页
        6.2.2 Acoustic navigation第98-100页
        6.2.3 Geophysical navigation第100-101页
    6.3 Sensor error第101-102页
    6.4 The Inertial-Slam algorithm for AUV第102-105页
        6.4.1 The state vector and its decomposition第102-103页
        6.4.2 Underwater vehicle model第103-104页
        6.4.3 The filtering of Inertial-SLAM第104-105页
    6.5 Simulation studies第105-108页
    6.6 Chapter summary第108-109页
Conclusions第109-112页
结论第112-115页
References第115-128页
List of Publications第128-131页
Acknowledgement第131-132页
Curriculum Vitae第132页

论文共132页,点击 下载论文
上一篇:禁酒令与辩诉交易的成型:1851-1919
下一篇:《英国法释义》与早期美国法:1770-1860