首页--工业技术论文--电工技术论文--输配电工程、电力网及电力系统论文--理论与分析论文--网络分析、电力系统分析论文

配电网短路故障分析

摘要第5-6页
Abstract第6页
Chapter 1 Introduction第10-13页
    1.1. Background第10页
    1.2. Research Significance第10-11页
    1.3 Outline of thesis第11-13页
Chapter 2 Symmetrical Component Method第13-19页
    2.1 Positive-Sequence Set第13-15页
    2.2 Negative-Sequence Set第15页
    2.3 Zero-Sequence Set第15-16页
    2.4 General Equations第16-17页
    2.5 Fault Impedence第17页
    2.6 Conclusion第17-19页
Chapter 3 Different Types of Fault in Neutral Point Non-EffectivelyGrounded System第19-28页
    3.1 Single-Phase-To-Ground Faults第19-20页
    3.2 Phase to Phase Fault第20-21页
    3.3 Double-Phase-To-Ground Faults第21-22页
    3.4 Non-Effectively Grounded System第22页
    3.5 Mathematical Model Of The Arc第22-23页
    3.6 Mayr model(Thermal breakdown theory)第23页
    3.7 Cassie Model(Electrical Break Down Theory)第23-24页
    3.8 The Arc State After The Current Zero-Crossing And Mayr-CassieTheory第24-25页
    3.9 Basic Principle Of Non-Effectively Grounded Systems第25-27页
    3.10 Conclusion第27-28页
Chapter 4 Analysis of Complex Faults In Distribution System第28-45页
    4.1 Classical Short-Circuit Analysis第28-29页
    4.2 Example of Classic Short-Circuit Calculations第29-31页
    4.3 Complex Faults Or Simultaneous Fault Calculation Using Two-PortNetwork Theory第31-33页
        4.3.1 Two-Port Networks第31-32页
        4.3.2 Calculation Of The Two-Port Z Parameters第32-33页
    4.4 Connecting Sequence Networks For Simultaneous Faults第33-34页
    4.5 Concurrent Fault Link Of Sequence Networks第34-40页
        4.5.1 Series-Series Connection (Z-Type Faults)第34-36页
        4.5.2 Parallel-Parallel Link(Y-Type Faults)第36-38页
        4.5.3 Series-Parallel Link (H-Type Faults)第38-40页
    4.6 Example:Simultaneous Line-To-Ground Faults第40-43页
    4.7 Complex Faults Classification第43页
        4.7.1 Arcing Faults第43页
        4.7.2 High-Impedance Faults (Hif)第43页
    4.8 Conclusion第43-45页
Chapter 5 Service Restoration第45-59页
    5.1 Service Restoration Of Distribution System With DistributedGeneration (DG)第45页
    5.2 Electric Power Systems And Need Of Multi-Agent System第45-46页
    5.3 Restoration With And Without DG第46-48页
        5.3.1 Fault At F1 (Figure 5-2)第47页
        5.3.2 Fault At F2 (Figure 5-2)第47-48页
    5.4 Optimal Location Of Distributed Generation第48-49页
    5.5 Optimal Sizing Of Distributed Generation第49-50页
    5.6 Reliability Analysis With DG第50-51页
        5.6.1 Types Of Faults第50页
        5.6.2 Permanent Faults At The System Branches第50-51页
            5.6.2.1 Temporary Faults第51页
            5.6.2.2 Faults At The Supply Substations第51页
            5.6.2.3 Faults At The Local Generators第51页
    5.7 DG Supported Service Restoration第51-52页
    5.8 Proposed Multiagent-Based Strategy第52-56页
        5.8.1 Load Agent第53-54页
        5.8.2 Operation Rules:第54页
        5.8.3 Feeder Agent第54-55页
        5.8.4 Effect Of Communication Failures第55-56页
    5.9 Self-Healing On Smart Distribution Systems第56-57页
    5.10 Conclusion第57-59页
Chapter 6 Simulations and Results第59-65页
    6.1 Simulation Results in Atp Model For Distribution Network第59页
    6.2 Atp Model for Single Line Fault In Distribution Network第59-60页
    6.3 Voltage and Current Results in Single Line Faults第60-62页
    6.4 Atp Model for Complex Fault in Distribution Network第62页
    6.5 Voltage and Current Graphs in Complex Faults In DistributionNetwork第62-65页
Chapter 7 Conclusion and Future Work第65-69页
    7.1 Conclusion第65页
    7.2 Future Trend Of Development第65-66页
    7.3 Challenges第66-69页
References第69-71页
Acknowledgement第71页

论文共71页,点击 下载论文
上一篇:利用需求响应策略实现辅助频率响应并提高电力系统的效率
下一篇:并网光伏系统传输线的故障定位