首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文--人工神经网络与计算论文

基于深度卷积神经网络的图像超分辨率

摘要第3-4页
Abstract第4页
1 Introduction第7-26页
    1.1 Research Background第7-9页
    1.2 Research Objective and Significance第9-11页
        1.2.1 Research Objective第9-10页
        1.2.2 Research Significance第10-11页
    1.3 Domestic and Overseas Progress第11-22页
        1.3.1 Research progress of super – resolution technologies第11-18页
        1.3.2 State and perspectives of machine learning第18-20页
        1.3.3 Overseas progress第20-22页
    1.4 Main Content and Research Methods第22-26页
        1.4.1 Main Content第22-23页
        1.4.2 Research Method第23-26页
2 Theoretical and model Analysis第26-39页
    2.1 General statement of the super-resolution problem第26-29页
        2.1.1 Common Image distorted model第26-27页
        2.1.2 The model of distortion process第27页
        2.1.3 The distortion functions第27-29页
    2.2 Main methods for solving super-resolution problem第29-34页
        2.2.1 The classical methods第29-30页
        2.2.2 Methods that use a-priori information第30-31页
        2.2.3 Methods that explicitly modeling a non-linearity第31-32页
        2.2.4 Neural Network Method第32-34页
    2.3 The applicability of neural networks for super-resolution problem第34-39页
        2.3.1 Overview of Deep Convolutional Neural networks第34-35页
        2.3.2 Realization of generative adversarial networks第35-39页
3 Image Reconstruction Technology第39-45页
    3.1 Instruments for super-resolution image restoration第39-41页
        3.1.1 Image quality metrics第39页
        3.1.2 Calculation of harmonic lenses第39-40页
        3.1.3 Image registration using a single harmonic lens第40-41页
    3.2 Instruments for super-resolution image restoration第41-45页
        3.2.1 Image quality metrics第41-43页
        3.2.2 Evaluation of the point spread function (PSF)第43-44页
        3.2.3 Elimination of chromatic distortion based on deconvolution第44-45页
4 Experiments第45-66页
    4.1 The first approach: Combination of GAN and DCNN第45-54页
        4.1.1 Application of GAN第45-48页
        4.1.2 The first experiment: The use of error function第48-52页
        4.1.3 The second experiment: The use of hidden representations第52-54页
    4.2 The error function generated by a deep neural network第54-56页
    4.3 Third approach: Elimination of distortion based on DCNN第56-60页
        4.3.1 The interchannel communication第56-57页
        4.3.2 DCNN Building第57-60页
    4.4 Perfomance Evaluation第60-66页
        4.4.1 The parameters of conducted researches第60-61页
        4.4.2 Comparative study of reconstruction quality第61-64页
        4.4.3 Comparison of the DCNN and GPU第64-66页
Conclusions and Future Work第66-69页
    Conclusion第66-67页
    Future Work第67-69页
References第69-74页
Research Projects and Publications in Master Study第74-75页
Acknowledgement第75-78页

论文共78页,点击 下载论文
上一篇:基于电流解耦控制的并联型APF优化设计
下一篇:嵌入式微云MCC中基于回归的任务卸载与最优资源分配