首页--农业科学论文--农作物论文--禾谷类作物论文--稻论文

水稻镍胁迫反应及NO和H2S介导的解毒机制研究

List of Abbreviations第17-18页
ABSTRACT第18-20页
摘要第21-23页
CHAPTER Ⅰ Research background and review of literature第23-55页
    1.1 Research background第23-24页
    1.2 Physical and chemical properties of Ni第24-25页
    1.3 Total reserves, production and uses of Ni worldwide第25-26页
    1.4 Sources of Ni in environment第26-27页
    1.5 Occurrence of Ni in environment第27-32页
        1.5.1 Ni in soils and sediments第28-29页
        1.5.2 Ni in atmosphere第29-31页
        1.5.3 Ni contents in various food products第31-32页
    1.6 Potential threats of Ni toxicity to aquatic organisms, animals and Humans第32-35页
        1.6.1 Effects of Ni toxicity in humans第32-33页
        1.6.2 Toxic effects of Ni on animals第33-34页
        1.6.3 Toxic effects of Ni on aquatic organisms第34-35页
    1.7 Functions and toxicity of Ni in plants第35-41页
        1.7.1 Uptake of Ni in plants第36-38页
        1.7.2 Transport and distribution of Ni in plants第38-40页
        1.7.3 Essentiality of Nickel in Plants第40-41页
    1.8 Ni toxicity in plants第41-43页
        1.8.1 Seed germination, plant growth and crop yield第41-42页
        1.8.2 Photosynthesis and gas exchanges parameters第42-43页
    1.9 Toxicity mechanisms of Ni in plants第43-46页
        1.9.1 Interference with other essential metal ions第43-44页
        1.9.2 Induction of oxidative stress第44-46页
    1.10 Nitric oxide第46-48页
        1.10.1 Nitric oxide biosynthesis in plants第47-48页
        1.10.2 Nitric oxide: an effective weapon of the plant第48页
    1.11 Hydrogen sulfide第48-52页
        1.11.1 Properties of hydrogen sulfide第49页
        1.11.2 Hydrogen sulfide biosynthesis in plants第49-50页
        1.11.3 H_2S signaling triggered by abiotic stresses第50-52页
        1.11.4 Positive effect of H_2S on plant growth under abiotic stresses第52页
    1.12 Research gap第52-53页
    1.13 Specific objectives第53-55页
CHAPTER Ⅱ Nickel stressed responses of rice in Ni subcellular distribution, antioxidant production and osmolyte accumulation第55-74页
    2.1 Introduction第55-56页
    2.2 Materials and methods第56-59页
        2.2.1 Plant material and growth conditions第56-57页
        2.2.2 Determination of growth parameters第57页
        2.2.3 Quantification of photosynthetic pigments第57页
        2.2.4 Determination of Ni content第57页
        2.2.5 Determination of Ni in subcellular fractions第57-58页
        2.2.6 Estimation of level of hydrogen peroxide (H_2O2) and malondialdehyde (MDA) content第58页
        2.2.7 Extraction and assay of antioxidant enzymes第58页
        2.2.8 Extraction and assay of non-enzymatic antioxidant, ascorbate and glutathione第58-59页
        2.2.9 Quantification of osmotic regulators第59页
    2.3 Statistical analysis第59页
    2.4 Results第59-69页
        2.4.1 Ni uptake and subcellular distribution第59-62页
        2.4.2 Ni stress increased H_2O2 levels and MDA contents第62-63页
        2.4.3 Effect of Ni stress on enzymatic and non-enzymatic antioxidant第63-66页
        2.4.4 Effect of Ni stress on osmotic regulators第66-68页
        2.4.5 Effect of Ni stress on photosynthetic pigments第68页
        2.4.6 Effect of Ni stress on rice growth and biomass第68-69页
    2.5 Discussion第69-73页
    2.6 Conclusion第73-74页
CHAPTER Ⅲ Nickel toxicity affects nitrogen metabolism in rice (Oryza sativa L.) plants第74-87页
    3.1 Introduction第74-76页
    3.2 Materials and methods第76-77页
        3.2.1 Plant material and growth conditions第76页
        3.2.2 Determination of plant growth第76页
        3.2.3 Quantification of photosynthetic pigments第76页
        3.2.4 Quantification of Ni content第76-77页
        3.2.5 Determination of NO3– and NH_4~+ contents第77页
        3.2.6 Determination of N metabolism related enzyme activities第77页
    3.3 Statistical analysis第77-78页
    3.4 Results第78-83页
        3.4.1 Ni-induced toxicity symptoms and Ni contents in rice plants第78-79页
        3.4.2 Impact of Ni stress on plant growth, biomass and photosynthetic pigments第79-80页
        3.4.3 Effects of Ni stress on NO3– and NH_4~+ contents第80-81页
        3.4.4 Effects of Ni stress on enzymes involved in N metabolism第81-83页
    3.5 Discussion第83-85页
    3.6 Conclusion第85-87页
CHAPTER Ⅳ Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression第87-112页
    4.1 Introduction第87-89页
    4.2 Materials and methods第89-92页
        4.2.1 Plant material and growth conditions第89页
        4.2.2 Nitric oxide and Ni treatments第89-90页
        4.2.3 Growth parameters第90页
        4.2.4 Measurement of Ni content and NO level in roots and shoots第90-91页
        4.2.5 Determination of photosynthetic pigments, soluble protein and proline contents第91页
        4.2.6 Determination of levels of H_2O2, MDA and electrolyte leakage第91页
        4.2.7 Extraction and assay of antioxidant enzymes第91页
        4.2.8 Extraction and estimation of total ascorbic acid (As A) and glutathione (GSH) contents第91-92页
        4.2.9 Total RNA extraction, c DNA synthesis, and quantitative real-time polymerase chain reaction (q RT-PCR) analysis第92页
    4.3 Statistical analysis第92-93页
    4.4 Results第93-107页
        4.4.1 NO, rather than other derivatives, contributed to the alleviation of rice seedlings under Ni stress第93-95页
        4.4.2 Effect of NO scavenger on NO-induced Ni tolerance in rice seedlings第95-97页
        4.4.3 Exogenous NO suppresses Ni uptake to overcome Ni toxicity第97页
        4.4.4 NO mitigates the Ni-Induced inhibition of rice seedling growth第97-99页
        4.4.5 NO enhances photosynthetic pigments under Ni stress第99页
        4.4.6 NO increases the accumulation of soluble protein and proline content under Ni stress第99-101页
        4.4.7 NO maintains the membrane integrity by suppressing the H_2O_2, MDA content and EL under-Ni stress第101-103页
        4.4.8 NO efficiently upregulates the activities of enzymatic and non-enzymatic antioxidant to counteract oxidative stress第103-105页
        4.4.9 Impact of NO and Ni on genes expression第105-107页
    4.5 Discussion第107-110页
    4.6 Conclusion第110-112页
CHAPTER Ⅴ Hydrogen sulfide enhances rice tolerance to nickel through prevention of chloroplast damage and improvement of nitrogen metabolism under excessive nickel第112-138页
    5.1 Introduction第112-114页
    5.2 Materials and methods第114-119页
        5.2.1 Plant material, growth conditions and treatments第114-115页
        5.2.2 Determination of plant growth第115页
        5.2.3 Determination of Ni content第115页
        5.2.4 Determination of H_2S content第115页
        5.2.5 Gas exchange measurements and photosynthetic pigments第115-116页
        5.2.6 Transmission electron microscopy第116页
        5.2.7 Extraction and assay of antioxidant enzymes第116页
        5.2.8 Extraction and estimation of total ascorbic acid (As A) and glutathione (GSH) contents第116-117页
        5.2.9 Determination of NO3– and NH_4~+ contents第117页
        5.2.10 Determination of N metabolism-related enzyme activities第117页
        5.2.11 Total RNA extraction, c DNA synthesis, and quantitative real-time polymerase chain reaction (q RT-PCR) analysis第117-119页
    5.3 Statistical analysis第119页
    5.4 Results第119-133页
        5.4.1 H_2S, rather than other derivatives, contributed to the alleviation of rice seedlings under Ni stress第119页
        5.4.2 Effect of H_2S scavenger and its biosynthesis inhibitor on H_2S-induced Ni tolerance in rice seedlings第119-122页
        5.4.3 H_2S suppresses Ni uptake to overcome Ni toxicity第122页
        5.4.4 H_2S improves plant growth under Ni stress第122页
        5.4.5 H_2S maintains gas exchange parameters in response to Ni stress第122-125页
        5.4.6 H_2S protects photosynthetic pigments第125页
        5.4.7 H_2S protects the ultrastructure of chloroplasts from Ni-induced damage第125-126页
        5.4.8 H_2S maintains the membrane integrity by suppressing the H_2O_2 and MDA content under Ni stress第126-127页
        5.4.9 H_2S efficiently upregulates the activities of antioxidant enzymes and total As A and GSH contents第127-129页
        5.4.10 H_2S balances NO_3~- and NH_4~+ contents in rice leaves第129页
        5.4.11 H_2S boosts the activities of N metabolism related enzymes第129-131页
        5.4.12 Transcriptional regulation of genes involved in N uptake and metabolism第131-133页
    5.5 Discussion第133-136页
    5.6 Conclusion第136-138页
CHAPTER Ⅵ Conclusions and future suggestions第138-141页
    6.1 General conclusions第138-139页
    6.2 Future suggestions第139-141页
References第141-169页
List of Publication第169-170页
ACKNOWLEDGMENT第170-173页

论文共173页,点击 下载论文
上一篇:棉花响应高低温胁迫MicroRNAs的鉴定及GhKCS13对低温敏感性的调控
下一篇:水源地生态补偿机制研究--以浙江乌溪江为例