首页--数理科学和化学论文--数学论文--代数、数论、组合理论论文--抽象代数(近世代数)论文--偏序集合与格论论文

偏序集上序收敛可拓扑化问题研究

摘要第5-7页
Abstract第7-8页
第1章 绪论第10-15页
    1.1 研究背景介绍第10-13页
        1.1.1 拓扑与收敛第10-11页
        1.1.2 偏序与收敛第11-13页
    1.2 本文的研究动机与创新第13-14页
    1.3 本文符号记法第14-15页
第2章 偏序集上的O_1-收敛与B-拓扑第15-32页
    2.1 基本知识第15-19页
    2.2 O_1-收敛与S~*-双连续偏序集第19-23页
    2.3 B-拓扑第23-32页
第3章 局部良序偏序集与局部完备偏序集第32-38页
    3.1 局部良序偏序集第32-35页
    3.2 局部完备偏序集第35-38页
第4章 MN-双连续偏序集与MN-拓扑第38-52页
    4.1 MN-双连续偏序集第38-44页
    4.2 MN-拓扑第44-48页
    4.3 偏序集上的O-收敛与O_2-收敛第48-52页
第5章 α~*(M)-连续偏序集与M-拓扑第52-61页
    5.1 α~*(M)-连续偏序集第52-56页
    5.2 M-拓扑第56-61页
结论第61-63页
参考文献第63-71页
致谢第71-72页
附录A (攻读学位期间所发表的学术论文目录)第72页

论文共72页,点击 下载论文
上一篇:同步启发的社区发现算法研究及应用
下一篇:二维半导体与金属异质结界面肖特基势垒调控的第一性原理研究