首页--天文学、地球科学论文--水文地质学与工程地质学论文--水文地质学(地下水水文学)论文--地下水动力学论文

运用多方法、多尺度表征美国怀俄明州拉勒米地区Blair Wallis研究区裂缝性花岗岩储层渗透率

作者简历第6-8页
abstract第8-15页
摘要第16-23页
Nomenclature第23-28页
Chapter 1 Introduction第28-56页
    1.1 Aims and significance of this research第28-30页
    1.2 Literature review第30-52页
        1.2.1 Conceptual models of flow and transport through the fractured rocks第30-32页
        1.2.2 Hydraulic aperture determination in fractured rocks第32-36页
        1.2.3 Application of nuclear magnetic resonance (NMR) technology in fractured rocks第36-45页
        1.2.4 Characterizing the heterogeneity of fractured rocks第45-52页
    1.3 Research content and techniques第52-55页
    1.4 Innovation points第55-56页
Chapter 2 Geological background第56-63页
    2.1 Location, lithology, and climate of Blair Wallis Well Field第56-59页
    2.2 Geological structure and borehole configuration第59-63页
Chapter 3 Site characterization data and methods第63-81页
    3.1 Overview第63-68页
    3.2 Slug test第68-72页
    3.3 FLUTe liner profiling第72-75页
    3.4 Pumping test and hydraulic tomography第75-77页
        3.4.1 Constant rate pumping test at a single borehole第75-76页
        3.4.2 Hydraulic tomography (HT)第76-77页
    3.5 Borehole NMR Measurements第77-78页
    3.6 Borehole televiewer, ambient impeller flowmeter, and magnetic susceptibility logging第78-81页
Chapter 4 Characterization of hydraulic properties and groundwater flow using borehole hydraulic tests and geophysical measurements第81-113页
    4.1 Slug test results and analysis第81-100页
        4.1.1 Slug Test Solutions第81-84页
        4.1.2 Qualitative analysis of well-skin effect第84-95页
        4.1.3 Non-Darcian flow第95-100页
    4.2 Hydraulic conductivity estimation using FLUTe liner profiling method第100-102页
    4.3 Determination of hydraulic aperture and groundwater velocity第102-108页
    4.4 Geological model of Blair Wallis第108-113页
Chapter 5 Hydraulic conductivity calibration of logging NMR第113-144页
    5.1 NMR Background第113-114页
    5.2 Feasibility of SDR model for fractured rocks第114-117页
    5.3 NMR signal response to flowing fractures第117-120页
    5.4 Calibration results and Estimation of NMR-Derived K第120-134页
        5.4.1 Optimizing the SDR parameters with bootstrap第120-128页
        5.4.2 Results of varying n第128-134页
    5.5 Discussion第134-141页
        5.5.1 Impact of different m value on K estimates第134-135页
        5.5.2 Impact of different n values第135-138页
        5.5.3 Comparison of the SDR empirical constants within the study site第138-139页
        5.5.4 Comparison of the SDR empirical constants between fractured granite and other types of materials第139页
        5.5.5 The Kozeny-Godefroy Model第139-141页
    5.6 Quantitative analysis of diffusion regime第141-142页
    5.7 Discussion on the relationship between b value and Resistivity and gamma ray logs第142-144页
Chapter 6 Pumping test analysis and preliminary study of 2D hydraulic tomography第144-161页
    6.1 Pumping Tests第144-147页
    6.2 Analysis of pumping test data第147-151页
        6.2.1 Estimated large scale hydraulic parameters from pumping test第147-150页
        6.2.2 Drawdown-time behaviors第150-151页
    6.3 2D Hydraulic tomography analysis第151-161页
        6.3.1 Successive linear estimator (SLE)第151-153页
        6.3.2 Description of models used for hydraulic tomography analysis第153-154页
        6.3.3 Estimated parameter fields from hydraulic tomography第154-157页
        6.3.4 Impacts of correlation scales on inversion results第157-159页
        6.3.5 Uncertainty estimates第159-161页
Conclusions第161-165页
Acknowledgement第165-167页
References第167-188页

论文共188页,点击 下载论文
上一篇:基于“靳三针疗法”的儿童脑病治疗仪的研制
下一篇:崇德年间满藏互使史实考辨