首页--经济论文--财政、金融论文--金融、银行论文--中国金融、银行论文--信贷论文

Neural Network Credit Scoring:Evidence from Business Applications

Abstract第5-7页
摘要第8-21页
1 Introduction第21-29页
    1.1 Background第21页
    1.2 Research Ideas and Methods第21-24页
        1.2.1 Research Ideas and Methods-1第21-23页
        1.2.2 Research Ideas and Methods-2第23-24页
        1.2.3 Research Ideas and Methods-3第24页
    1.3 Research Questions and Research Objectives第24-26页
        1.3.1 Research Questions and Research Objectives-1第24-25页
        1.3.2 Research Questions and Research Objectives-2第25页
        1.3.3 Research Questions and Research Objectives-3第25-26页
    1.4 Research Innovations/Contributions第26-27页
        1.4.1 Research Innovations/Contributions-1第26页
        1.4.2 Research Innovations/Contributions-2第26-27页
        1.4.3 Research Innovations/Contributions-3第27页
    1.5 The Research Content and Structure Arrangement第27-29页
2 Literature Review第29-45页
    2.1 Credit Scoring第29-35页
        2.1.1 Credit Scoring Definitions第29-30页
        2.1.2 Five Cs Credit Scoring Concept第30-32页
        2.1.3 The Credit Scoring Development Procedure第32-34页
        2.1.4 Benefits of Credit Scoring第34-35页
    2.2 Empirical Literature第35-45页
        2.2.1 Review of Credit Scoring: Neural Network Models第35-40页
        2.2.2 Credit Approval Data Modeling: Probabilistic Neural Network andSupport Vector Machine第40-41页
        2.2.3 Topological Applications of MLPs and SVMs in Financial DecisionSupport Systems第41-45页
3 The Neural Network Credit Scoring Models第45-53页
    3.1 Multilayer Perceptron (MLP)第45-46页
    3.2 Radial Basis Function (RBF)第46-47页
    3.3 Learning Vector Quantization (LVQ)第47-48页
    3.4 Modular Neural Networks (MNN)第48-49页
    3.5 Probabilistic Neural Network (PNN)第49-50页
    3.6 Self Organizing Maps (SOM)第50-51页
    3.7 Generalized Feedforward Networks (GFFNs)第51-52页
    3.8 Jordan/Elman Network (JEN)第52-53页
4 Experimental Methodology第53-74页
    4.1 Experimental Setting-1: Multiple Hybrids Neural Networks第53-62页
        4.1.1 Data Background第53页
        4.1.2 Experimental Protocol第53页
        4.1.3 Data Preprocessing第53-55页
        4.1.4 Feature Selection第55-56页
        4.1.5 Classification第56-59页
        4.1.6 Performance Metrics第59-62页
    4.2 Experimental Setting-2:Credit Approval Data Modeling-Probabilistic NeuralNetwork and Support Vector Machine第62-67页
        4.2.1 Real-world Credit Dataset第62-63页
        4.2.2 Overview of Classification Techniques第63-65页
        4.2.3 Evaluation Measures第65-66页
        4.2.4 Parameter Settings第66-67页
        4.2.5 Cross-Validation Methodology第67页
    4.3 Experimental Setting-3:Topological Applications of MLPs and SVMs inFinancial Decision Support Systems第67-72页
        4.3.1 Financial Decision Support Systems Dataset第67-69页
        4.3.2 Financial Decision Support Systems Algorithms第69-70页
        4.3.3 MLP's Activation Functions and Hidden Layers Tuning第70页
        4.3.4 SVM Kernel Functions and Algorithm's Parameters第70-71页
        4.3.5 Cross-Validation Methodology第71页
        4.3.6 Performance Evaluation第71页
        4.3.7 Roles of Credit Rating Agencies in Financial Decision SupportSystems第71-72页
    4.4 Integration of Experimental Settings第72-74页
5 Experimental Results第74-111页
    5.1 Chinese Small Business Credit Scoring: Multiple Hybrids Neural Networks第74-85页
        5.1.1     Base Classifiers第74-76页
        5.1.2 Neural Network Classifiers第76页
        5.1.3 Multiple Hybrid Classifiers第76-81页
        5.1.4 Comparisons of the Ten Best Credit Scoring Classifiers第81-85页
    5.2 Credit Approval Data Modeling- Probabilistic Neural Network and SupportVector Machine第85-95页
        5.2.1 Australian Credit第86页
        5.2.2 German Credit第86-87页
        5.2.3 Japanese Credit第87页
        5.2.4 Chinese Credit第87-88页
        5.2.5 PAKDD Credit第88页
        5.2.6 Kaggle Credit第88-89页
        5.2.7 Average Credit Scoring Performance第89-91页
        5.2.8 Performance Validation第91-92页
        5.2.9 Cost of Credit Scoring Errors第92-94页
        5.2.10 Findings第94-95页
    5.3 Topological Applications of SVMs and MLPs in Financial Decision SupportSystems第95-111页
        5.3.1 Financial Decision Support Systems-Credit Scoring第95-98页
        5.3.2 Financial Decision Support Systems-Bankruptcy Prediction第98-101页
        5.3.3 Cost of Financial Decision Errors第101-102页
        5.3.4 Measuring Average Performance第102-105页
        5.3.5 Reliability of the Results第105-109页
        5.3.6 Findings第109-111页
6 Conclusion第111-118页
    6.1 Research Conclusion-1第111-112页
    6.2 Policy Implications and Future Road Maps-1第112页
    6.3 Research Conclusion-2第112-114页
    6.4 Policy Implications and Future Road Maps-2第114页
    6.5 Research Conclusion-3第114-116页
    6.6 Policy Implications and Future Road Maps-3第116-118页
References第118-128页
Appendix A第128-137页
Appendix B第137-140页
Publications during PhD Period第140-141页
Acknowledgement第141-143页
Curriculum Vitae第143-145页

论文共145页,点击 下载论文
上一篇:多阶段均值—方差模型下动态资产配置问题的最优策略研究
下一篇:社会资本、盈余分配对社员合作行为影响研究--以陕西省果蔬类合作社为例