基于类中心化的快速大规模文本层次分类问题研究
摘要 | 第1-6页 |
Abstract | 第6-7页 |
引言 | 第7-9页 |
第一章 基本概念和相关工作 | 第9-17页 |
·单标签的分类器算法 | 第9-11页 |
·多标签的分类器算法 | 第11-12页 |
·大规模类标签文本分类问题 | 第12-17页 |
·LSHTC1单标签数据介绍 | 第12-13页 |
·LSHTC2多标签数据介绍 | 第13-14页 |
·大规模多标签文本分类问题概述 | 第14-17页 |
第二章 类中心化统计学习方法 | 第17-26页 |
·统计类中心方法的近似解释 | 第17-18页 |
·退化的线性分类器 | 第17-18页 |
·基于聚类方式的推广近似 | 第18页 |
·特征提取方式 | 第18-20页 |
·第一类特征提取方式 | 第19页 |
·第二类特征提取方式 | 第19页 |
·结合第一第二类的特征提取方式 | 第19-20页 |
·IDF特征的归入以及多类特征结合统计的方式 | 第20-22页 |
·加入IDF统计特征 | 第20-21页 |
·两类特征结合方式 | 第21-22页 |
·层次化的类中心方法 | 第22-26页 |
第三章 类中心的多类标签统计方法 | 第26-31页 |
·类中心算法扩展方法 | 第26-27页 |
·多类标签的标签扩展算法 | 第27-28页 |
·多类标签的排序预测算法 | 第28-31页 |
·相似度值的排序 | 第28-29页 |
·最佳n原则排序 | 第29页 |
·混合排序方法 | 第29-31页 |
第四章 实验 | 第31-50页 |
·实验数据以及实验环境介绍 | 第31-33页 |
·数据预处理 | 第31-32页 |
·数据特征介绍 | 第32页 |
·实验环境介绍 | 第32-33页 |
·评测指标简介 | 第33-37页 |
·单一类标签的评价指标 | 第33-35页 |
·多类标签的评价指标 | 第35-37页 |
·单一类标签实验结果及实验分析 | 第37-46页 |
·评测测试结果 | 第37-41页 |
·不同特征提取方式的结果比较 | 第41页 |
·两类特征的结合比较 | 第41-42页 |
·独立特征分布权重计入 | 第42-43页 |
·训练测试时间与空间消耗比较 | 第43-44页 |
·层次信息加入推理的时间消耗比较 | 第44-46页 |
·多类标签实验结果及实验分析 | 第46-49页 |
·不同排序算法结果比较 | 第46页 |
·排序算法参数调整实验 | 第46-47页 |
·多类标签具体实验结果 | 第47-49页 |
·实验总结 | 第49-50页 |
第五章 总结 | 第50-51页 |
参考文献 | 第51-54页 |
论文发表情况 | 第54-55页 |
致谢 | 第55-56页 |