基于数据挖掘技术的武汉市财政收入预测与分析
摘要 | 第4-5页 |
Abstract | 第5-6页 |
1 绪论 | 第9-13页 |
1.1 研究背景和意义 | 第9-10页 |
1.2 国内外研究现状 | 第10-11页 |
1.3 研究内容与方法 | 第11-13页 |
2 财政预测理论概述 | 第13-15页 |
2.1 财政预测的定义 | 第13页 |
2.2 财政预测方法 | 第13-14页 |
2.3 本章小结 | 第14-15页 |
3 数据挖掘理论概述 | 第15-19页 |
3.1 数据挖掘的定义 | 第15-16页 |
3.2 数据挖掘的实施步骤及过程 | 第16-18页 |
3.3 本章小结 | 第18-19页 |
4 财政预测技术与方法 | 第19-33页 |
4.1 神经网络算法 | 第19-24页 |
4.2 灰色预测模型GM(1,1) | 第24-27页 |
4.3 Adaptive-Lasso变量选取 | 第27-32页 |
4.4 本章小结 | 第32-33页 |
5 武汉市财政预测模型的建立与分析 | 第33-45页 |
5.1 数据的理解 | 第33-35页 |
5.2 数据的探索 | 第35-38页 |
5.3 模型建立和实证分析 | 第38-43页 |
5.4 灰色预测结果分析 | 第43页 |
5.5 财政收入的神经网络预测 | 第43-44页 |
5.6 神经网络预测结果分析 | 第44页 |
5.7 本章小结 | 第44-45页 |
6 总结与展望 | 第45-47页 |
6.1 全文总结 | 第45页 |
6.2 课题展望 | 第45-47页 |
致谢 | 第47-48页 |
参考文献 | 第48-51页 |