首页--工业技术论文--自动化技术、计算机技术论文--自动化技术及设备论文--机器人技术论文--机器人论文

欠驱动腔内手术机器人高空间精度运动控制的统计学习建模

Dedication第4-5页
Acknowledgements第5-7页
摘要第7-9页
Abstract第9-11页
List of Abbreviations第21-22页
Chapter 1 Introduction第22-32页
    1.1 Research Background第22-25页
    1.2 Research Motivation and Significance第25-26页
    1.3 Key Research Challenges and Thesis Objective第26-28页
        1.3.1 Kinematics Constraints Control第27页
        1.3.2 Dynamic Constraints Control第27-28页
        1.3.3 Teleoperation Constraints Control第28页
    1.4 Major Contributions of thesis第28-29页
    1.5 Organization of thesis第29-31页
    1.6 Publication Notes第31-32页
Chapter 2 Literature Review第32-74页
    2.1 A Roadmap to Flexible Robotics in Minimally Invasive Surgery第32-34页
    2.2 Flexible Surgical Robotics in Minimally Invasive Surgery第34-47页
        2.2.1 Core Principles第35-37页
            2.2.1.1 Single-port surgery ….…第35页
            2.2.1.2 Range of motion ....…第35-36页
            2.2.1.3 Spatial steerability .. ..…第36页
            2.2.1.4 Surgical precision .…第36-37页
        2.2.2 Classifications第37-47页
            2.2.2.1 Design mechanisms..…第37-42页
            2.2.2.2 Actuation strategy第42-44页
            2.2.2.3 Clinical applications第44-47页
    2.3 Motion Control in Flexible Surgical Robotics第47-59页
        2.3.1 Motion Constraints Control第47-55页
            2.3.1.1 Kinematics modeling and control第47-51页
            2.3.1.2 Dynamics modeling and analysis第51-53页
            2.3.1.3 Motion planning and collision avoidance …第53-55页
        2.3.2 Teleoperation of Flexible Surgical Robotics第55-59页
            2.3.2.1 Existing teleoperation systems第56-57页
            2.3.2.2 Teleoperation control methods and limitations第57-59页
    2.4 Achievements of Flexible Robotics in MIS第59-72页
        2.4.1 Research Achievements第60-66页
        2.4.2 Clinical Trials and Applications第66-70页
            2.4.2.1 Abdominal interventions第66-67页
            2.4.2.2 Cardiac interventions第67-69页
            2.4.2.3 Colorectal interventions第69页
            2.4.2.4 Ophthalmological interventions第69-70页
            2.4.2.5 Cranial interventions第70页
        2.4.3 Technical Challenges第70-72页
            2.4.3.1 Design and instrumentation第71页
            2.4.3.2 Navigation modeling and control第71-72页
            2.4.3.3 Teleoperation and feedback system第72页
    2.5 Summary第72-74页
Chapter 3 Flexible Robotic System Designs and Prototypes第74-86页
    3.1 Introduction第74页
    3.2 Flexible Robotic System for Radiosurgery第74-78页
        3.2.1 Design Motivation第74-75页
        3.2.2 Design Mechanism and Component Descriptions第75-78页
    3.3 Flexible Robotic Catheter System第78-85页
        3.3.1 Design Motivations第78-79页
        3.3.2 Design Prototypes and Component Descriptions第79-85页
            3.3.2.1 First generation robotic catheter system第79-80页
            3.3.2.2 Second generation robotic catheter system第80-85页
    3.4 Remarks第85-86页
Chapter 4 Non-Iterative IK Modeling in Surgical Snake-like Robots第86-112页
    4.1 Introduction第86页
    4.2 Related Works第86-88页
    4.3 IK Model for Flexible PRn2R Snake-like Robot …第88-96页
        4.3.1 Design of PRn2R Flexible Model第88-89页
        4.3.2 Geometric IK Model for IK with PRn2R Configurations第89-92页
        4.3.3 Experiments and Model Validation第92-96页
            4.3.3.1 Experimental Results第92-94页
            4.3.3.2 Model validation第94-96页
    4.4 IK Solution for Lead-Module in 2nR Snake-like Robot第96-109页
        4.4.1 Non-Iterative Geometric Approach for Spatially Flexible Robots …第96-102页
            4.4.1.1 Two-link lead-module第97-98页
            4.4.1.2 Four-link lead-module …第98-102页
        4.4.2 Implementations and Results第102-106页
            4.4.2.1 Results from simulated model第103-106页
        4.4.3 Model Evaluation and Discussions第106-109页
            4.4.3.1 Arbitrary points in workspace第106页
            4.4.3.2 Complete workspace evaluation第106-107页
            4.4.3.3 Comparison with existing methods第107-109页
    4.5 Summary and Remarks第109-112页
Chapter 5 Iterative IK Modeling in Surgical Snake-like Robots第112-134页
    5.1 Introduction第112页
    5.2 Related works第112-114页
    5.3 Deeply-Learnt Damped Least-Squares IK Method for Snake-like Robots……第114-132页
        5.3.1 Prototype of the Snake-like Robot第115页
        5.3.2 Proposed Deeply-learnt DLS IK Method第115-120页
            5.3.2.1 Jacobian DLS method第116-118页
            5.3.2.2 Prediction of damping factor by deep learning第118-120页
        5.3.3 Model Implementation and Experimentation第120-125页
            5.3.3.1 Implementation of DNN第121-124页
            5.3.3.2 Implementation results第124-125页
        5.3.4 Performance Evaluations第125-132页
            5.3.4.1 Evaluation based on DNN’s prediction第125-127页
            5.3.4.2 Evaluation based on existing IK methods第127-132页
    5.4 Summary and Remarks第132-134页
Chapter 6 Dynamic Constraint Modeling in Intraluminal Surgical Robots第134-164页
    6.1 Introduction第134页
    6.2 Related works第134-136页
    6.3 Dynamic Constraint Modeling for the Snake-like Robot第136-144页
        6.3.1 Kinematics Modeling for Dynamics Control of the Snake-like Robot第136页
        6.3.2 Dynamics Modeling第136-139页
            6.3.2.1 Forward Recursion第138-139页
            6.3.2.2 Backward Recursion第139页
        6.3.3 Experiments and Results第139-144页
    6.4 Adaptive Compensation of Backlash in Robotic Catheter System第144-161页
        6.4.1 Backlash Characterization during Catheterization第144-148页
        6.4.2 Proposed Adaptive Compensation System第148-153页
            6.4.2.1 Boundedness strategy required for backlash prediction第148-149页
            6.4.2.2 Learning-based model for backlash prediction第149-151页
            6.4.2.3 Contact force modulation第151-152页
            6.4.2.4 Adaptive backlash compensation第152-153页
        6.4.3 In-Vitro Experiment and Validation第153-161页
            6.4.3.1 Experimental Setup第153-156页
            6.4.3.2 In-vitro catheterization validation第156-160页
            6.4.3.3 Comparison with existing robotic catheter systems第160-161页
    6.5 Summary and Remarks第161-164页
Chapter 7 Teleoperation Models for Intraluminal Surgical Robots in MS Flexible Pathway Navigations第164-184页
    7.1 Introduction第164-165页
    7.2 Study on Teleoperation of Flexible Snake-like Robot第165-175页
        7.2.1 MS Robotic Control in Isometric Workspaces第165-170页
            7.2.1.1 Kinematics model for Phantom Omni device第166-167页
            7.2.1.2 Fuzzy-PD control model for MS teleoperation第167-168页
            7.2.1.3 Simulation results and evaluation第168-170页
        7.2.2 MS Robotic Control in Non-Isometric Workspaces第170-175页
            7.2.2.1 Kinematics solution of the MS devices第170-171页
            7.2.2.2 Workspace mapping第171-172页
            7.2.2.3 Experimental validations第172-175页
    7.3 Study on Teleoperation of Robotic Catheter System第175-181页
        7.3.1 Teleoperation of the robotic catheter system第175-177页
        7.3.2 Motion and Force Feedback System第177-179页
            7.3.2.1 Acquisition module第177-178页
            7.3.2.2 Feedback module第178-179页
        7.3.3 Experimental results and discussions第179-181页
    7.4 Summary and Remarks第181-184页
Chapter 8 Conclusions and Future Works第184-190页
    8.1 Conclusions第184-185页
    8.2 Limitations第185-188页
        8.2.1 Intraluminal Access Surgery with the Snake-like Robotic System第185-187页
        8.2.2 Intraluminal Access with the Robotic Catheter System第187-188页
    8.3 Future Works第188-190页
References第190-208页
Author’s Biography第208-211页

论文共211页,点击 下载论文
上一篇:基于义齿磨损性能测试的冗余驱动咀嚼机器人技术研究
下一篇:非线性系统故障可诊断性评价及诊断方法研究