首页--医药、卫生论文--基础医学论文--医用一般科学论文--生物医学工程论文--一般性问题论文--生物材料学论文

纤维素纳米晶/氧化锌杂化材料的结构设计及其生物聚酯膜的改性研究

Acknowledgements第4-7页
Abstract第7-10页
Chapter 1. Introduction第22-56页
    1.1. Introduction第22-24页
    1.2. Biodegradable polymer第24-29页
        1.2.1. Polyhydroxyalkanoates polymers (PHAs)第25-26页
        1.2.2. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)第26-27页
        1.2.3. The properties of PHBV第27页
        1.2.4. Applications of PHBV nanocomposites第27-29页
    1.3. Nanocellulose materials第29-37页
        1.3.1. Cellulose nanocrystals (CNCs)第29-30页
        1.3.2. Cellulose nanofibrils (CNFs)第30-32页
        1.3.3. Cellulose nanocrystals as nanofillers based biopolymer nanocomposites and their potential applications第32-33页
        1.3.4. Processing of nanocellulose based nanocomposites第33-37页
    1.4. Cellulose nanocrystals /Zinc oxide composites (CNCs/ZnO)第37-38页
    1.5. Synthesis of nanocellulose/Zinc oxide composite (NCs/ZnO)第38-42页
        1.5.1. Precipitation method第39-40页
        1.5.2. Microwave -assisted hydrothermal method第40-41页
        1.5.3. In situ-casting method第41页
        1.5.4. Application of cellulose nanocrystal/ZnO composites第41-42页
    1.6. Outline of the dissertation第42-43页
    1.7. Experimental design of the dissertation第43-44页
    1.8. References第44-56页
Chapter 2. Green synthesis of sheet-like cellulose nanocrystal-zinc oxide nanohybrids with multifunctional performance through one-step hydrothermal method第56-79页
    2.1. Introduction第56-58页
    2.2. Experimental section第58-61页
        2.2.1. Materials第59页
        2.2.2. Synthesis of sheet-like nanohybrids第59页
        2.2.3. Characterizations第59-61页
    2.3. Results and discussions第61-74页
        2.3.1. Morphology and microstructures第61-64页
        2.3.2. Crystal structure第64-66页
        2.3.3. Chemical structure and optical properties第66-67页
        2.3.4. Thermal properties第67-69页
        2.3.5. Antimicrobial properties第69-71页
        2.3.6. Photocatalytic activity第71-72页
        2.3.7. The apparent kinetic rate constants and Turnover frequency (TOF)第72-74页
    2.4. Summary第74-75页
    2.5. References第75-79页
Chapter 3. Sheet-like cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing agents in biopolyester composite nanofibers with ultrahigh UV- Shielding and antibacterial performances第79-114页
    3.1. Introduction第79-83页
    3.2. Experimental section第83-88页
        3.2.1. Materials第84页
        3.2.2. Synthesis of sheet-like CNC-ZnO nanohybrids第84-85页
        3.2.3. Preparation and fabrication of composite nanofibers第85页
        3.2.4. Characterization第85-88页
    3.3. Results and discussions第88-106页
        3.3.1. Surface morphologies and microstructures第88-92页
        3.3.2. Chemical structure第92-94页
        3.3.3. Thermal stability crystallization and melting behaviour第94-97页
        3.3.4. Spherulite Morphology第97-99页
        3.3.5. UV-Shielding Performance第99-102页
        3.3.6. The absorbency of solution A第102-104页
        3.3.7. Antimicrobial properties第104-106页
    3.4. Summary第106-107页
    3.5. References第107-114页
Chapter 4. In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites by incorporating cellulose nanocrystal-ZnO nanohybrids第114-149页
    4.1. Introduction第114-116页
    4.2. Experimental section第116-123页
        4.2.1. Materials第117页
        4.2.2. Preparation of cellulose nanocrystals/zinc oxide (CNC/ZnO) Nanohybrids第117-118页
        4.2.3. Preparation of the PHBV/CNC-ZnO nanocomposites第118页
        4.2.4. Characterization第118-123页
    4.3. Results and discussion第123-143页
        4.3.1. Morphology analysis第123-126页
        4.3.2. Chemical structure and optical properties第126-129页
        4.3.3. Thermal stability第129-131页
        4.3.4. Non-isothermal crystallization and melting behavior第131-133页
        4.3.5. Mechanical and barrier properties第133-135页
        4.3.6. In vitro degradation and water contact angle第135-136页
        4.3.7. Antimicrobial properties第136-138页
        4.3.8. Morphological evolution of PHBV/CNC-ZnO nanocomposites第138-139页
        4.3.9. Chemical structure of PHBV/CNC-ZnO nanocomposites after degradation in PBS solution第139-141页
        4.3.10. Thermal stability of PHBV/CNC-ZnO nanocomposites after degradation in PBS solution第141-143页
    4.4. Summary第143-144页
    4.5. References第144-149页
Chapter 5. Sun-light and thermo-sensitive responsive of PHBV phase change materials with functionalized Cellulose nanocrystal-ZnO nanohybrids for thermal energy storage and controllable drug release behavior第149-185页
    5.1. Introduction第149-153页
    5.2. Experimental section第153-157页
        5.2.1. Materials第154页
        5.2.2. Synthesis of CNC-ZnO第154页
        5.2.3. Electrospinning of phase change composite fiber (PCF)第154-155页
        5.2.4. Electrospinning of PCF composite with Tetracycline hydrochloride (TH )第155-156页
        5.2.5. Thermal treatment of the PCF composites第156页
        5.2.6. Characterization第156-157页
    5.3. Results and discussion第157-178页
        5.3.1. The morphologies of phase change composite fiber (PCF)第157-161页
        5.3.2. Crystalline properties of PCF composites第161-162页
        5.3.3. Shape –stability of PCF composites第162-163页
        5.3.4. Chemical structures of PCF composite (FT-IR)第163-165页
        5.3.5. Thermal properties and supercooling extents of PCF composites第165-168页
        5.3.6. Thermal stability of PCF composites第168-171页
        5.3.7. Thermal reliability of PCF composites第171-172页
        5.3.8. Photothermal Heat conversion of PCF composite第172-174页
        5.3.9. IR observation第174-175页
        5.3.10. In vitro drug release of drug loaded -PCF composites第175-178页
    5.4. Summary第178-179页
    5.5. References第179-185页
Chapter 6. Conclusions and future works第185-191页
    6.1. Conclusions第185-188页
    6.2. Recommendations for future research第188-191页
Appendix第191-195页
Publications第195-196页

论文共196页,点击 下载论文
上一篇:基于SEMG的肌肉疲劳度评估及其在上肢康复产品设计中的应用研究
下一篇:基于IO-SDA模型的行业水资源利用影响因素研究--以浙江省为例