首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文

Behaviors Modeling and Analysis of Big Data from Web Apps Using Machine Learning and Deep RNN Techniques

ACKNOWLEDGEMENT第5-12页
ABSTRACT第12-13页
论文文摘/Translated Abstract第14-16页
CHAPTER 1 INTRODUCTION第16-22页
    1.1 Background第16页
    1.2 Motivation第16-17页
    1.3 Objectives of the study第17页
    1.4 Problem description第17-19页
        1.4.1 Behavior exhibiting features on data第18-19页
    1.5 Implementation and deployment of deep learning第19-20页
    1.6 Study contributions第20页
    1.7 Organization of the Thesis第20-22页
CHAPTER 2 BACKGROUND LITERATURE REVIEW第22-26页
    2.1 Related works第22-23页
    2.2 Behavior Modeling and Anomaly Detection Literature第23-24页
    2.3 Deep Data Analytics and Behavior Modeling第24-26页
CHAPTER 3 METHODOLOGY OF DEEP LEARNING USING RNNs第26-38页
    3.1 RNNs and Deep Learning第26-27页
        3.1.1 Characteristics of Deep RNNs第26-27页
    3.2 Methodology and mathematical concepts in RNN and deep learning第27-34页
        3.2.1 Perceptron as a basic neuron第27-29页
        3.2.2 How learning in neural net algorithms happen第29-30页
        3.2.3 Learning using Deep RNNs第30-31页
        3.2.4 Gating mechanism in LSTM to create context awareness第31-34页
    3.3 Features engineering using doc2vec modeling approach第34-38页
        3.3.1 Doc2vec modeling第35-37页
        3.3.2 Necessity of a doc2vec model in language modeling第37-38页
CHAPTER 4 IMPLEMENTATION OVERVIEW第38-51页
    4.1 Introduction to Behavior modeling (BM)第38页
    4.2 Functional requirements for the study experiments第38页
    4.3 Experiment setup analysis第38-51页
        4.3.1 How to prevent the Vanishing Gradient Problem第38页
        4.3.2 Theano Library第38-40页
        4.3.3 Data collection, Features Analysis &Preparation第40-42页
            4.3.3.2 Features engineering for inputs preparation第41-42页
            4.3.3.3 The Importance of word vectors in a vector space model第42页
        4.3.4 Keras- deep learning library and RNN Model第42-43页
            4.3.4.1 Distributed representation Words in Doc2vec Matrix第43页
            4.3.4.2 Extracting inputs from the doc2vec model第43页
        4.3.5 The Algorithm Design and Architecture第43-46页
            4.3.5.1 Training第44-45页
            4.3.5.2 Input layer第45页
            4.3.5.3 Output layer第45-46页
            4.3.5.4 Objective function activation using Softmax第46页
            4.3.5.5 Compiling and fitting the model第46页
        4.3.6 Choice of Efficient parameters第46-50页
            4.3.6.1 Training modes第47页
            4.3.6.2 Initialization in layers第47页
            4.3.6.3 Activation function第47-48页
            4.3.6.3 Adding Dropout between layers第48页
            4.3.6.4 Batch Normalization第48页
            4.3.6.5 Choice for model optimization第48-49页
            4.3.6.6 Choice for the Batch size第49页
            4.3.6.7 Using Callbacks第49-50页
        4.3.7 Prediction inference第50-51页
CHAPTER 5 S A CASE STUDIES, BENCHMARK AND RESULTS第51-68页
    5.1 Introduction第51-53页
        5.1.1 People's Data Acquisition with a web application第51-52页
        5.1.2 Steps followed to realize a case study experiment第52-53页
    5.2 Movie Reviews Case study 1-The IMDbModel第53页
    5.3 Dataset Source第53-58页
        5.3.2 Pre-processing and Data cleaning第53-54页
        5.3.3 Feature vectors engineering through Doc2vec Modeling第54页
        5.3.4 Learning features similarity via the distributed memory(DM) words modeling第54-58页
        5.3.5 Inputs vectors and formatting第58页
    5.4 Classification with Keras第58-63页
        5.4.1 Extract the Training and testing vectors from the doc2vec vector space model第59-60页
        5.4.2 Initialize a new model第60页
        5.4.3 Adding hidden layers to the model第60页
        5.4.4 Model compiling and parameter tuning第60页
        5.4.5 Performing Training with Keras classifier algorithm第60-61页
        5.4.6 Performance results and model evaluation第61页
        5.4.7 Generating visualizations第61-62页
        5.4.8 Perform output predictions第62-63页
        5.4.9 Using the Model for deployment第63页
    5.5 USA Travelers'Airlines sentiments Case Study 2-The TwitterDataModel第63-65页
    5.6 Benchmarks setup and Baselines results第65-68页
        5.6.1 kNN classifier第65页
        5.6.2 Random forest classifier第65-66页
        5.6.3 Passive-Aggressive Classifier第66页
        5.6.4 Benchmarks Setup and results第66-68页
CHAPTER 6 EVALUATION, ANALYSIS AND BASELINES COMPARISON第68-80页
    6.1 Metrics presentation and Evaluation第68-69页
    6.2 Algorithms evaluation第69-76页
        6.2.1 Training time第69页
        6.2.2 Accuracy and Loss Measures第69-70页
        6.2.3 Effect of increasing the number of epochs第70页
        6.2.4 The Existence of unbalanced training sets第70页
        6.2.5 Confusion Matrix (CM)第70-71页
        6.2.6 ROC Curve and Graph第71-73页
        6.2.7 Accuracy and Loss response curves第73-75页
        6.2.8 Visualizing predictions and class probabilities第75-76页
    6.3 Summary discussion from visual graphs第76-77页
    6.4 Evaluation of Baselines&Performance Comparisons第77-78页
    6.5 Challenges/Limitations encountered第78-79页
    6.6 Deployment第79-80页
CONCLUSION AND FURTHER SUGGESTIONS第80-82页
    Conclusion第80-81页
    Suggestions on future works improvements第81-82页
REFERENCES第82-84页
Appendix A During the period of Study for a Master's Degree第84页

论文共84页,点击 下载论文
上一篇:决策信息系统的增量式F-并行属性约简
下一篇:基于稀疏表示的肿瘤分类算法研究