首页--工业技术论文--自动化技术、计算机技术论文--自动化基础理论论文--人工智能理论论文

对等网络上的分布式合作学习

Abstract第5-6页
摘要第7-14页
List of Symbols第14-15页
List of Acronyms第15-20页
Chapter 1 Introduction第20-30页
    1.1 Overview第20-26页
        1.1.1 Distributed machine learning第22-23页
        1.1.2 Distributed cooperative adaptation第23-25页
        1.1.3 Distributed multi-agent optimization第25-26页
    1.2 Contributions and organization第26-30页
Chapter 2 Preliminaries第30-36页
    2.1 Algebraic graph theory第30页
    2.2 Distributed average consensus第30-31页
    2.3 Feedforward neural network with random weights第31-33页
    2.4 RBF neural networks第33-36页
Chapter 3 A Zero-Gradient-Sum Algorithm for Distributed Cooperative Learning Basedon FNNRW第36-56页
    3.1 Introduction第36-37页
    3.2 Problem formulation第37-40页
    3.3 ZGS-based distributed optimization model第40-45页
    3.4 Distributed cooperative learning for FNNRW第45-48页
    3.5 Simulations第48-56页
        3.5.1 Test case 1: approximation of the ‘Sin C’ function with noise第48-52页
        3.5.2 Test case 2: classification of the MNIST dataset第52-56页
Chapter 4 Distributed Cooperative Learning for FNNRW Based on Event-TriggeredCommunication第56-74页
    4.1 Introduction第56-58页
    4.2 Problem formulation第58-60页
    4.3 Distributed learning for FNNRW with event-triggered communication第60-64页
        4.3.1 ZGS-based distributed learning for FNNRW第60-62页
        4.3.2 Distributed learning for FNNRW with event-triggered communication第62-64页
    4.4 Convergence rate第64-70页
    4.5 Simulations第70-74页
        4.5.1 Test case1: approximation of the ‘Sin C’ function with noise第70-72页
        4.5.2 Test case 2: classification of the MNIST dataset第72-74页
Chapter 5 Distributed Cooperative Learning for Output Feedback RBF Neural Net-works第74-96页
    5.1 Introduction第74-75页
    5.2 Preliminaries第75-77页
    5.3 DCL from adaptive neural network output control第77-88页
        5.3.1 Problem description and controller design第77-79页
        5.3.2 DCL scheme第79-80页
        5.3.3 Closed-loop stability and neural network learning capability第80-88页
    5.4 Learning control using experiences第88-90页
    5.5 Simulations第90-96页
Chapter 6 Population-Based Distributed Optimization over Peer-to-Peer Networks第96-118页
    6.1 Introduction第96-98页
    6.2 Population-based distributed optimization framework第98-99页
    6.3 D-PSO-ON algorithm第99-109页
        6.3.1 Consensus search第102-105页
        6.3.2 Consensus evaluation第105-106页
        6.3.3 PSO cooperative evolution第106-108页
        6.3.4 Terminating with local silencing rule第108-109页
    6.4 Simulations第109-115页
        6.4.1 Test case 1: a small undirected/directed networks第110-114页
        6.4.2 Test case 2: a large undirected network第114-115页
    6.5 Discussions第115-118页
Chapter 7 Conclusions第118-122页
References第122-134页
Acknowledgments第134-136页
Curriculum Vitae第136-138页

论文共138页,点击 下载论文
上一篇:基于协作学习和文化进化机制的量子粒子群算法及应用研究
下一篇:基于压缩感知与逆向调制的链路采样技术研究